Statistics > Machine Learning
[Submitted on 8 Oct 2018 (v1), last revised 9 Feb 2021 (this version, v2)]
Title:Stein Neural Sampler
View PDFAbstract:We propose two novel samplers to generate high-quality samples from a given (un-normalized) probability density. Motivated by the success of generative adversarial networks, we construct our samplers using deep neural networks that transform a reference distribution to the target distribution. Training schemes are developed to minimize two variations of the Stein discrepancy, which is designed to work with un-normalized densities. Once trained, our samplers are able to generate samples instantaneously. We show that the proposed methods are theoretically sound and experience fewer convergence issues compared with traditional sampling approaches according to our empirical studies.
Submission history
From: Guang Cheng [view email][v1] Mon, 8 Oct 2018 16:06:40 UTC (2,467 KB)
[v2] Tue, 9 Feb 2021 02:57:54 UTC (615 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.