Computer Science > Information Retrieval
[Submitted on 4 Oct 2018]
Title:DeepNIS: Deep Neural Network for Nonlinear Electromagnetic Inverse Scattering
View PDFAbstract:Nonlinear electromagnetic (EM) inverse scattering is a quantitative and super-resolution imaging technique, in which more realistic interactions between the internal structure of scene and EM wavefield are taken into account in the imaging procedure, in contrast to conventional tomography. However, it poses important challenges arising from its intrinsic strong nonlinearity, ill-posedness, and expensive computation costs. To tackle these difficulties, we, for the first time to our best knowledge, exploit a connection between the deep neural network (DNN) architecture and the iterative method of nonlinear EM inverse scattering. This enables the development of a novel DNN-based methodology for nonlinear EM inverse problems (termed here DeepNIS). The proposed DeepNIS consists of a cascade of multi-layer complexvalued residual convolutional neural network (CNN) modules. We numerically and experimentally demonstrate that the DeepNIS outperforms remarkably conventional nonlinear inverse scattering methods in terms of both the image quality and computational time. We show that DeepNIS can learn a general model approximating the underlying EM inverse scattering system. It is expected that the DeepNIS will serve as powerful tool in treating highly nonlinear EM inverse scattering problems over different frequency bands, involving large-scale and high-contrast objects, which are extremely hard and impractical to solve using conventional inverse scattering methods.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.