Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Nov 2018 (v1), last revised 13 Dec 2018 (this version, v2)]
Title:Exploring Hypergraph Representation on Face Anti-spoofing Beyond 2D Attacks
View PDFAbstract:Face anti-spoofing plays a crucial role in protecting face recognition systems from various attacks. Previous model-based and deep learning approaches achieve satisfactory performance for 2D face spoofs, but remain limited for more advanced 3D attacks such as vivid masks. In this paper, we address 3D face anti-spoofing via the proposed Hypergraph Convolutional Neural Networks (HGCNN). Firstly, we construct a computation-efficient and posture-invariant face representation with only a few key points on hypergraphs. The hypergraph representation is then fed into the designed HGCNN with hypergraph convolution for feature extraction, while the depth auxiliary is also exploited for 3D mask anti-spoofing. Further, we build a 3D face attack database with color, depth and infrared light information to overcome the deficiency of 3D face anti-spoofing data. Experiments show that our method achieves the state-of-the-art performance over widely used 3D and 2D databases as well as the proposed one under various tests.
Submission history
From: Gusi Te [view email][v1] Wed, 28 Nov 2018 14:36:55 UTC (9,430 KB)
[v2] Thu, 13 Dec 2018 12:09:07 UTC (9,430 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.