Computer Science > Networking and Internet Architecture
[Submitted on 3 Jan 2019]
Title:Throughput Maximization for Ambient Backscatter Communication: A Reinforcement Learning Approach
View PDFAbstract:Ambient backscatter (AB) communication is an emerging wireless communication technology that enables wireless devices (WDs) to communicate without requiring active radio transmission. In an AB communication system, a WD switches between communication and energy harvesting modes. The harvested energy is used to power the devices operations, e.g., circuit power consumption and sensing operation. In this paper, we focus on maximizing the throughput performance of AB communication system by adaptively selecting the operating mode under fading channel environment. We model the problem as an infinite-horizon Markov Decision Process (MDP) and accordingly obtain the optimal mode switching policy by the value iteration algorithm given the channel distributions. Meanwhile, when the knowledge of channel distribution is absent, a Q-learning (QL) method is applied to explore a suboptimal strategy through device repeated interaction with the environment. Finally, our simulations show that the proposed QL method can achieve close-to-optimal throughput performance and significantly outperforms the other than representative benchmark methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.