Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Jan 2019]
Title:Discovering Underlying Person Structure Pattern with Relative Local Distance for Person Re-identification
View PDFAbstract:Modeling the underlying person structure for person re-identification (re-ID) is difficult due to diverse deformable poses, changeable camera views and imperfect person detectors. How to exploit underlying person structure information without extra annotations to improve the performance of person re-ID remains largely unexplored. To address this problem, we propose a novel Relative Local Distance (RLD) method that integrates a relative local distance constraint into convolutional neural networks (CNNs) in an end-to-end way. It is the first time that the relative local constraint is proposed to guide the global feature representation learning. Specially, a relative local distance matrix is computed by using feature maps and then regarded as a regularizer to guide CNNs to learn a structure-aware feature representation. With the discovered underlying person structure, the RLD method builds a bridge between the global and local feature representation and thus improves the capacity of feature representation for person re-ID. Furthermore, RLD also significantly accelerates deep network training compared with conventional methods. The experimental results show the effectiveness of RLD on the CUHK03, Market-1501, and DukeMTMC-reID datasets. Code is available at \url{this https URL}.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.