Computer Science > Machine Learning
[Submitted on 5 Feb 2019]
Title:Distribution-Dependent Analysis of Gibbs-ERM Principle
View PDFAbstract:Gibbs-ERM learning is a natural idealized model of learning with stochastic optimization algorithms (such as Stochastic Gradient Langevin Dynamics and ---to some extent--- Stochastic Gradient Descent), while it also arises in other contexts, including PAC-Bayesian theory, and sampling mechanisms. In this work we study the excess risk suffered by a Gibbs-ERM learner that uses non-convex, regularized empirical risk with the goal to understand the interplay between the data-generating distribution and learning in large hypothesis spaces. Our main results are distribution-dependent upper bounds on several notions of excess risk. We show that, in all cases, the distribution-dependent excess risk is essentially controlled by the effective dimension $\mathrm{tr}\left(\boldsymbol{H}^{\star} (\boldsymbol{H}^{\star} + \lambda \boldsymbol{I})^{-1}\right)$ of the problem, where $\boldsymbol{H}^{\star}$ is the Hessian matrix of the risk at a local minimum. This is a well-established notion of effective dimension appearing in several previous works, including the analyses of SGD and ridge regression, but ours is the first work that brings this dimension to the analysis of learning using Gibbs densities. The distribution-dependent view we advocate here improves upon earlier results of Raginsky et al. (2017), and can yield much tighter bounds depending on the interplay between the data-generating distribution and the loss function. The first part of our analysis focuses on the localized excess risk in the vicinity of a fixed local minimizer. This result is then extended to bounds on the global excess risk, by characterizing probabilities of local minima (and their complement) under Gibbs densities, a results which might be of independent interest.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.