Computer Science > Machine Learning
[Submitted on 24 Feb 2019]
Title:Truth Inference at Scale: A Bayesian Model for Adjudicating Highly Redundant Crowd Annotations
View PDFAbstract:Crowd-sourcing is a cheap and popular means of creating training and evaluation datasets for machine learning, however it poses the problem of `truth inference', as individual workers cannot be wholly trusted to provide reliable annotations. Research into models of annotation aggregation attempts to infer a latent `true' annotation, which has been shown to improve the utility of crowd-sourced data. However, existing techniques beat simple baselines only in low redundancy settings, where the number of annotations per instance is low ($\le 3$), or in situations where workers are unreliable and produce low quality annotations (e.g., through spamming, random, or adversarial behaviours.) As we show, datasets produced by crowd-sourcing are often not of this type: the data is highly redundantly annotated ($\ge 5$ annotations per instance), and the vast majority of workers produce high quality outputs. In these settings, the majority vote heuristic performs very well, and most truth inference models underperform this simple baseline. We propose a novel technique, based on a Bayesian graphical model with conjugate priors, and simple iterative expectation-maximisation inference. Our technique produces competitive performance to the state-of-the-art benchmark methods, and is the only method that significantly outperforms the majority vote heuristic at one-sided level 0.025, shown by significance tests. Moreover, our technique is simple, is implemented in only 50 lines of code, and trains in seconds.
Submission history
From: Benjamin Rubinstein [view email][v1] Sun, 24 Feb 2019 10:48:25 UTC (83 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.