Computer Science > Digital Libraries
[Submitted on 26 Feb 2019 (v1), last revised 6 Mar 2019 (this version, v2)]
Title:The FAIR Funder pilot programme to make it easy for funders to require and for grantees to produce FAIR Data
View PDFAbstract:There is a growing acknowledgement in the scientific community of the importance of making experimental data machine findable, accessible, interoperable, and reusable (FAIR). Recognizing that high quality metadata are essential to make datasets FAIR, members of the GO FAIR Initiative and the Research Data Alliance (RDA) have initiated a series of workshops to encourage the creation of Metadata for Machines (M4M), enabling any self-identified stakeholder to define and promote the reuse of standardized, comprehensive machine-actionable metadata. The funders of scientific research recognize that they have an important role to play in ensuring that experimental results are FAIR, and that high quality metadata and careful planning for FAIR data stewardship are central to these goals. We describe the outcome of a recent M4M workshop that has led to a pilot programme involving two national science funders, the Health Research Board of Ireland (HRB) and the Netherlands Organisation for Health Research and Development (ZonMW). These funding organizations will explore new technologies to define at the time that a request for proposals is issued the minimal set of machine-actionable metadata that they would like investigators to use to annotate their datasets, to enable investigators to create such metadata to help make their data FAIR, and to develop data-stewardship plans that ensure that experimental data will be managed appropriately abiding by the FAIR principles. The FAIR Funders design envisions a data-management workflow having seven essential stages, where solution providers are openly invited to participate. The initial pilot programme will launch using existing computer-based tools of those who attended the M4M Workshop.
Submission history
From: Erik Schultes [view email][v1] Tue, 26 Feb 2019 08:28:11 UTC (505 KB)
[v2] Wed, 6 Mar 2019 07:54:31 UTC (540 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.