Computer Science > Robotics
[Submitted on 3 Mar 2019 (v1), last revised 3 Jun 2019 (this version, v2)]
Title:Predicting Vehicle Behaviors Over An Extended Horizon Using Behavior Interaction Network
View PDFAbstract:Anticipating possible behaviors of traffic participants is an essential capability of autonomous vehicles. Many behavior detection and maneuver recognition methods only have a very limited prediction horizon that leaves inadequate time and space for planning. To avoid unsatisfactory reactive decisions, it is essential to count long-term future rewards in planning, which requires extending the prediction horizon. In this paper, we uncover that clues to vehicle behaviors over an extended horizon can be found in vehicle interaction, which makes it possible to anticipate the likelihood of a certain behavior, even in the absence of any clear maneuver pattern. We adopt a recurrent neural network (RNN) for observation encoding, and based on that, we propose a novel vehicle behavior interaction network (VBIN) to capture the vehicle interaction from the hidden states and connection feature of each interaction pair. The output of our method is a probabilistic likelihood of multiple behavior classes, which matches the multimodal and uncertain nature of the distant future. A systematic comparison of our method against two state-of-the-art methods and another two baseline methods on a publicly available real highway dataset is provided, showing that our method has superior accuracy and advanced capability for interaction modeling.
Submission history
From: Wenchao Ding [view email][v1] Sun, 3 Mar 2019 06:54:33 UTC (4,537 KB)
[v2] Mon, 3 Jun 2019 07:41:18 UTC (4,384 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.