Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Mar 2019]
Title:Knowledge Adaptation for Efficient Semantic Segmentation
View PDFAbstract:Both accuracy and efficiency are of significant importance to the task of semantic segmentation. Existing deep FCNs suffer from heavy computations due to a series of high-resolution feature maps for preserving the detailed knowledge in dense estimation. Although reducing the feature map resolution (i.e., applying a large overall stride) via subsampling operations (e.g., pooling and convolution striding) can instantly increase the efficiency, it dramatically decreases the estimation accuracy. To tackle this dilemma, we propose a knowledge distillation method tailored for semantic segmentation to improve the performance of the compact FCNs with large overall stride. To handle the inconsistency between the features of the student and teacher network, we optimize the feature similarity in a transferred latent domain formulated by utilizing a pre-trained autoencoder. Moreover, an affinity distillation module is proposed to capture the long-range dependency by calculating the non-local interactions across the whole image. To validate the effectiveness of our proposed method, extensive experiments have been conducted on three popular benchmarks: Pascal VOC, Cityscapes and Pascal Context. Built upon a highly competitive baseline, our proposed method can improve the performance of a student network by 2.5\% (mIOU boosts from 70.2 to 72.7 on the cityscapes test set) and can train a better compact model with only 8\% float operations (FLOPS) of a model that achieves comparable performances.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.