Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Mar 2019 (v1), last revised 20 Aug 2019 (this version, v4)]
Title:Auto-ReID: Searching for a Part-aware ConvNet for Person Re-Identification
View PDFAbstract:Prevailing deep convolutional neural networks (CNNs) for person re-IDentification (reID) are usually built upon ResNet or VGG backbones, which were originally designed for classification. Because reID is different from classification, the architecture should be modified accordingly. We propose to automatically search for a CNN architecture that is specifically suitable for the reID task. There are three aspects to be tackled. First, body structural information plays an important role in reID but it is not encoded in backbones. Second, Neural Architecture Search (NAS) automates the process of architecture design without human effort, but no existing NAS methods incorporate the structure information of input images. Third, reID is essentially a retrieval task but current NAS algorithms are merely designed for classification. To solve these problems, we propose a retrieval-based search algorithm over a specifically designed reID search space, named Auto-ReID. Our Auto-ReID enables the automated approach to find an efficient and effective CNN architecture for reID. Extensive experiments demonstrate that the searched architecture achieves state-of-the-art performance while reducing 50% parameters and 53% FLOPs compared to others.
Submission history
From: Yu Wu [view email][v1] Sat, 23 Mar 2019 07:26:50 UTC (1,723 KB)
[v2] Tue, 26 Mar 2019 06:33:23 UTC (2,073 KB)
[v3] Sun, 21 Apr 2019 13:54:48 UTC (1,701 KB)
[v4] Tue, 20 Aug 2019 08:20:43 UTC (5,967 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.