Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Apr 2019]
Title:Online Adaptation through Meta-Learning for Stereo Depth Estimation
View PDFAbstract:In this work, we tackle the problem of online adaptation for stereo depth estimation, that consists in continuously adapting a deep network to a target video recordedin an environment different from that of the source training set. To address this problem, we propose a novel Online Meta-Learning model with Adaption (OMLA). Our proposal is based on two main contributions. First, to reducethe domain-shift between source and target feature distributions we introduce an online feature alignment procedurederived from Batch Normalization. Second, we devise a meta-learning approach that exploits feature alignment forfaster convergence in an online learning setting. Additionally, we propose a meta-pre-training algorithm in order toobtain initial network weights on the source dataset whichfacilitate adaptation on future data streams. Experimentally, we show that both OMLA and meta-pre-training helpthe model to adapt faster to a new environment. Our proposal is evaluated on the wellestablished KITTI dataset,where we show that our online method is competitive withstate of the art algorithms trained in a batch setting.
Submission history
From: Stéphane Lathuilière [view email][v1] Wed, 17 Apr 2019 19:24:15 UTC (5,586 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.