Computer Science > Robotics
[Submitted on 25 Apr 2019]
Title:Neural Path Planning: Fixed Time, Near-Optimal Path Generation via Oracle Imitation
View PDFAbstract:Fast and efficient path generation is critical for robots operating in complex environments. This motion planning problem is often performed in a robot's actuation or configuration space, where popular pathfinding methods such as A*, RRT*, get exponentially more computationally expensive to execute as the dimensionality increases or the spaces become more cluttered and complex. On the other hand, if one were to save the entire set of paths connecting all pair of locations in the configuration space a priori, one would run out of memory very quickly. In this work, we introduce a novel way of producing fast and optimal motion plans for static environments by using a stepping neural network approach, called OracleNet. OracleNet uses Recurrent Neural Networks to determine end-to-end trajectories in an iterative manner that implicitly generates optimal motion plans with minimal loss in performance in a compact form. The algorithm is straightforward in implementation while consistently generating near-optimal paths in a single, iterative, end-to-end roll-out. In practice, OracleNet generally has fixed-time execution regardless of the configuration space complexity while outperforming popular pathfinding algorithms in complex environments and higher dimensions
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.