Computer Science > Robotics
[Submitted on 28 Apr 2019]
Title:Vector Autoregressive POMDP Model Learning and Planning for Human-Robot Collaboration
View PDFAbstract:Human-robot collaboration (HRC) has emerged as a hot research area at the intersection of control, robotics, and psychology in recent years. It is of critical importance to obtain an expressive but meanwhile tractable model for human beings in HRC. In this paper, we propose a model called Vector Autoregressive POMDP (VAR-POMDP) model which is an extension of the traditional POMDP model by considering the correlation among observations. The VAR-POMDP model is more powerful in the expressiveness of features than the traditional continuous observation POMDP since the traditional one is a special case of the VAR-POMDP model. Meanwhile, the proposed VAR-POMDP model is also tractable, as we show that it can be effectively learned from data and we can extend point-based value iteration (PBVI) to VAR-POMDP planning. Particularly, in this paper, we propose to use the Bayesian non-parametric learning to decide potential human states and learn a VAR-POMDP model using data collected from human demonstrations. Then, we consider planning with respect to PCTL which is widely used as safety and reachability requirement in robotics. Finally, the advantage of using the proposed model for HRC is validated by experimental results using data collected from a driver-assistance test-bed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.