Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Apr 2019 (v1), last revised 8 Jun 2019 (this version, v2)]
Title:Deep Fitting Degree Scoring Network for Monocular 3D Object Detection
View PDFAbstract:In this paper, we propose to learn a deep fitting degree scoring network for monocular 3D object detection, which aims to score fitting degree between proposals and object conclusively. Different from most existing monocular frameworks which use tight constraint to get 3D location, our approach achieves high-precision localization through measuring the visual fitting degree between the projected 3D proposals and the object. We first regress the dimension and orientation of the object using an anchor-based method so that a suitable 3D proposal can be constructed. We propose FQNet, which can infer the 3D IoU between the 3D proposals and the object solely based on 2D cues. Therefore, during the detection process, we sample a large number of candidates in the 3D space and project these 3D bounding boxes on 2D image individually. The best candidate can be picked out by simply exploring the spatial overlap between proposals and the object, in the form of the output 3D IoU score of FQNet. Experiments on the KITTI dataset demonstrate the effectiveness of our framework.
Submission history
From: Lijie Liu [view email][v1] Fri, 26 Apr 2019 09:40:22 UTC (2,795 KB)
[v2] Sat, 8 Jun 2019 09:49:06 UTC (2,844 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.