Computer Science > Information Retrieval
[Submitted on 6 May 2019 (v1), last revised 20 May 2019 (this version, v3)]
Title:POG: Personalized Outfit Generation for Fashion Recommendation at Alibaba iFashion
View PDFAbstract:Increasing demand for fashion recommendation raises a lot of challenges for online shopping platforms and fashion communities. In particular, there exist two requirements for fashion outfit recommendation: the Compatibility of the generated fashion outfits, and the Personalization in the recommendation process. In this paper, we demonstrate these two requirements can be satisfied via building a bridge between outfit generation and recommendation. Through large data analysis, we observe that people have similar tastes in individual items and outfits. Therefore, we propose a Personalized Outfit Generation (POG) model, which connects user preferences regarding individual items and outfits with Transformer architecture. Extensive offline and online experiments provide strong quantitative evidence that our method outperforms alternative methods regarding both compatibility and personalization metrics. Furthermore, we deploy POG on a platform named Dida in Alibaba to generate personalized outfits for the users of the online application iFashion.
This work represents a first step towards an industrial-scale fashion outfit generation and recommendation solution, which goes beyond generating outfits based on explicit queries, or merely recommending from existing outfit pools. As part of this work, we release a large-scale dataset consisting of 1.01 million outfits with rich context information, and 0.28 billion user click actions from 3.57 million users. To the best of our knowledge, this dataset is the largest, publicly available, fashion related dataset, and the first to provide user behaviors relating to both outfits and fashion items.
Submission history
From: Wen Chen [view email][v1] Mon, 6 May 2019 08:00:25 UTC (8,034 KB)
[v2] Thu, 16 May 2019 09:09:07 UTC (2,987 KB)
[v3] Mon, 20 May 2019 03:30:28 UTC (3,030 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.