Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 May 2019 (v1), last revised 1 Dec 2019 (this version, v5)]
Title:Seesaw-Net: Convolution Neural Network With Uneven Group Convolution
View PDFAbstract:In this paper, we are interested in boosting the representation capability of convolution neural networks which utilizing the inverted residual structure. Based on the success of Inverted Residual structure[Sandler et al. 2018] and Interleaved Low-Rank Group Convolutions[Sun et al. 2018], we rethink this two pattern of neural network structure, rather than NAS(Neural architecture search) method[Zoph and Le 2017; Pham et al. 2018; Liu et al. 2018b], we introduce uneven point-wise group convolution, which provide a novel search space for designing basic blocks to obtain better trade-off between representation capability and computational cost. Meanwhile, we propose two novel information flow patterns that will enable cross-group information flow for multiple group convolution layers with and without any channel permute/shuffle operation. Dense experiments on image classification task show that our proposed model, named Seesaw-Net, achieves state-of-the-art(SOTA) performance with limited computation and memory cost. Our code will be open-source and available together with pre-trained models.
Submission history
From: Jintao Zhang [view email][v1] Thu, 9 May 2019 14:56:59 UTC (286 KB)
[v2] Wed, 15 May 2019 13:10:09 UTC (291 KB)
[v3] Sun, 4 Aug 2019 04:05:03 UTC (291 KB)
[v4] Wed, 7 Aug 2019 03:21:21 UTC (176 KB)
[v5] Sun, 1 Dec 2019 12:48:35 UTC (176 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.