Computer Science > Social and Information Networks
[Submitted on 27 May 2019]
Title:MCNE: An End-to-End Framework for Learning Multiple Conditional Network Representations of Social Network
View PDFAbstract:Recently, the Network Representation Learning (NRL) techniques, which represent graph structure via low-dimension vectors to support social-oriented application, have attracted wide attention. Though large efforts have been made, they may fail to describe the multiple aspects of similarity between social users, as only a single vector for one unique aspect has been represented for each node. To that end, in this paper, we propose a novel end-to-end framework named MCNE to learn multiple conditional network representations, so that various preferences for multiple behaviors could be fully captured. Specifically, we first design a binary mask layer to divide the single vector as conditional embeddings for multiple behaviors. Then, we introduce the attention network to model interaction relationship among multiple preferences, and further utilize the adapted message sending and receiving operation of graph neural network, so that multi-aspect preference information from high-order neighbors will be captured. Finally, we utilize Bayesian Personalized Ranking loss function to learn the preference similarity on each behavior, and jointly learn multiple conditional node embeddings via multi-task learning framework. Extensive experiments on public datasets validate that our MCNE framework could significantly outperform several state-of-the-art baselines, and further support the visualization and transfer learning tasks with excellent interpretability and robustness.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.