Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Jun 2019 (v1), last revised 30 Nov 2020 (this version, v3)]
Title:DiCENet: Dimension-wise Convolutions for Efficient Networks
View PDFAbstract:We introduce a novel and generic convolutional unit, DiCE unit, that is built using dimension-wise convolutions and dimension-wise fusion. The dimension-wise convolutions apply light-weight convolutional filtering across each dimension of the input tensor while dimension-wise fusion efficiently combines these dimension-wise representations; allowing the DiCE unit to efficiently encode spatial and channel-wise information contained in the input tensor. The DiCE unit is simple and can be seamlessly integrated with any architecture to improve its efficiency and performance. Compared to depth-wise separable convolutions, the DiCE unit shows significant improvements across different architectures. When DiCE units are stacked to build the DiCENet model, we observe significant improvements over state-of-the-art models across various computer vision tasks including image classification, object detection, and semantic segmentation. On the ImageNet dataset, the DiCENet delivers 2-4% higher accuracy than state-of-the-art manually designed models (e.g., MobileNetv2 and ShuffleNetv2). Also, DiCENet generalizes better to tasks (e.g., object detection) that are often used in resource-constrained devices in comparison to state-of-the-art separable convolution-based efficient networks, including neural search-based methods (e.g., MobileNetv3 and MixNet. Our source code in PyTorch is open-source and is available at this https URL
Submission history
From: Sachin Mehta [view email][v1] Sat, 8 Jun 2019 20:17:06 UTC (3,487 KB)
[v2] Mon, 25 Nov 2019 20:16:21 UTC (5,808 KB)
[v3] Mon, 30 Nov 2020 06:27:08 UTC (7,676 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.