Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Jun 2019 (v1), last revised 17 May 2020 (this version, v6)]
Title:Learning from Unlabelled Videos Using Contrastive Predictive Neural 3D Mapping
View PDFAbstract:Predictive coding theories suggest that the brain learns by predicting observations at various levels of abstraction. One of the most basic prediction tasks is view prediction: how would a given scene look from an alternative viewpoint? Humans excel at this task. Our ability to imagine and fill in missing information is tightly coupled with perception: we feel as if we see the world in 3 dimensions, while in fact, information from only the front surface of the world hits our retinas. This paper explores the role of view prediction in the development of 3D visual recognition. We propose neural 3D mapping networks, which take as input 2.5D (color and depth) video streams captured by a moving camera, and lift them to stable 3D feature maps of the scene, by disentangling the scene content from the motion of the camera. The model also projects its 3D feature maps to novel viewpoints, to predict and match against target views. We propose contrastive prediction losses to replace the standard color regression loss, and show that this leads to better performance on complex photorealistic data. We show that the proposed model learns visual representations useful for (1) semi-supervised learning of 3D object detectors, and (2) unsupervised learning of 3D moving object detectors, by estimating the motion of the inferred 3D feature maps in videos of dynamic scenes. To the best of our knowledge, this is the first work that empirically shows view prediction to be a scalable self-supervised task beneficial to 3D object detection.
Submission history
From: Adam Harley [view email][v1] Mon, 10 Jun 2019 01:53:42 UTC (6,907 KB)
[v2] Mon, 24 Jun 2019 02:02:58 UTC (6,923 KB)
[v3] Wed, 10 Jul 2019 23:02:29 UTC (6,479 KB)
[v4] Mon, 30 Sep 2019 18:52:19 UTC (8,915 KB)
[v5] Mon, 17 Feb 2020 17:09:42 UTC (9,008 KB)
[v6] Sun, 17 May 2020 02:16:28 UTC (9,008 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.