Computer Science > Computation and Language
[Submitted on 15 Jun 2019]
Title:Automatic Conditional Generation of Personalized Social Media Short Texts
View PDFAbstract:Automatic text generation has received much attention owing to rapid development of deep neural networks. In general, text generation systems based on statistical language model will not consider anthropomorphic characteristics, which results in machine-like generated texts. To fill the gap, we propose a conditional language generation model with Big Five Personality (BFP) feature vectors as input context, which writes human-like short texts. The short text generator consists of a layer of long short memory network (LSTM), where a BFP feature vector is concatenated as one part of input for each cell. To enable supervised training generation model, a text classification model based convolution neural network (CNN) has been used to prepare BFP-tagged Chinese micro-blog corpora. Validated by a BFP linguistic computational model, our generated Chinese short texts exhibit discriminative personality styles, which are also syntactically correct and semantically smooth with appropriate emoticons. With combination of natural language generation with psychological linguistics, our proposed BFP-dependent text generation model can be widely used for individualization in machine translation, image caption, dialogue generation and so on.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.