Computer Science > Machine Learning
[Submitted on 1 Jul 2019]
Title:Understanding Memory Modules on Learning Simple Algorithms
View PDFAbstract:Recent work has shown that memory modules are crucial for the generalization ability of neural networks on learning simple algorithms. However, we still have little understanding of the working mechanism of memory modules. To alleviate this problem, we apply a two-step analysis pipeline consisting of first inferring hypothesis about what strategy the model has learned according to visualization and then verify it by a novel proposed qualitative analysis method based on dimension reduction. Using this method, we have analyzed two popular memory-augmented neural networks, neural Turing machine and stack-augmented neural network on two simple algorithm tasks including reversing a random sequence and evaluation of arithmetic expressions. Results have shown that on the former task both models can learn to generalize and on the latter task only the stack-augmented model can do so. We show that different strategies are learned by the models, in which specific categories of input are monitored and different policies are made based on that to change the memory.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.