Electrical Engineering and Systems Science > Signal Processing
[Submitted on 26 Jun 2019]
Title:Electroencephalogram (EEG) for Delineating Objective Measure of Autism Spectrum Disorder (ASD) (Extended Version)
View PDFAbstract:Autism Spectrum Disorder (ASD) is a developmental disorder that often impairs a child's normal development of the brain. According to CDC, it is estimated that 1 in 6 children in the US suffer from development disorders, and 1 in 68 children in the US suffer from ASD. This condition has a negative impact on a person's ability to hear, socialize and communicate. Overall, ASD has a broad range of symptoms and severity; hence the term spectrum is used. One of the main contributors to ASD is known to be genetics. Up to date, no suitable cure for ASD has been found. Early diagnosis is crucial for the long-term treatment of ASD, but this is challenging due to the lack of a proper objective measures. Subjective measures often take more time, resources, and have false positives or false negatives. There is a need for efficient objective measures that can help in diagnosing this disease early as possible with less effort.
EEG measures the electric signals of the brain via electrodes placed on various places on the scalp. These signals can be used to study complex neuropsychiatric issues. Studies have shown that EEG has the potential to be used as a biomarker for various neurological conditions including ASD. This chapter will outline the usage of EEG measurement for the classification of ASD using machine learning algorithms.
Submission history
From: Yasith Jayawardana [view email][v1] Wed, 26 Jun 2019 01:13:21 UTC (2,972 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.