Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 4 Jul 2019]
Title:Security modeling and efficient computation offloading for service workflow in mobile edge computing
View PDFAbstract:It is a big challenge for resource-limited mobile devices (MDs) to execute various complex and energy-consumed mobile applications. Fortunately, as a novel computing paradigm, edge computing (MEC) can provide abundant computing resources to execute all or parts of the tasks of MDs and thereby can greatly reduce the energy of MD and improve the QoS of applications. However, offloading workflow tasks to the MEC servers are liable to external security threats (e.g., snooping, alteration). In this paper, we propose a security and energy efficient computation offloading (SEECO) strategy for service workflows in MEC environment, the goal of which is to optimize the energy consumption under the risk probability and deadline constraints. First, we build a security overhead model to measure the execution time of security services. Then, we formulate the computation offloading problem by incorporating the security, energy consumption and execution time of workflow application. Finally, based on the genetic algorithm (GA), the corresponding coding strategies of SEECO are devised by considering tasks execution order and location and security services selection. Extensive experiments with the variety of workflow parameters demonstrate that SEECO strategy can achieve the security and energy efficiency for the mobile applications.
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.