Computer Science > Machine Learning
[Submitted on 12 Jul 2019]
Title:Deep network as memory space: complexity, generalization, disentangled representation and interpretability
View PDFAbstract:By bridging deep networks and physics, the programme of geometrization of deep networks was proposed as a framework for the interpretability of deep learning systems. Following this programme we can apply two key ideas of physics, the geometrization of physics and the least action principle, on deep networks and deliver a new picture of deep networks: deep networks as memory space of information, where the capacity, robustness and efficiency of the memory are closely related with the complexity, generalization and disentanglement of deep networks. The key components of this understanding include:(1) a Fisher metric based formulation of the network complexity; (2)the least action (complexity=action) principle on deep networks and (3)the geometry built on deep network configurations. We will show how this picture will bring us a new understanding of the interpretability of deep learning systems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.