Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Jul 2019 (v1), last revised 8 Jul 2020 (this version, v3)]
Title:Enhancing Underexposed Photos using Perceptually Bidirectional Similarity
View PDFAbstract:Although remarkable progress has been made, existing methods for enhancing underexposed photos tend to produce visually unpleasing results due to the existence of visual artifacts (e.g., color distortion, loss of details and uneven exposure). We observed that this is because they fail to ensure the perceptual consistency of visual information between the source underexposed image and its enhanced output. To obtain high-quality results free of these artifacts, we present a novel underexposed photo enhancement approach that is able to maintain the perceptual consistency. We achieve this by proposing an effective criterion, referred to as perceptually bidirectional similarity, which explicitly describes how to ensure the perceptual consistency. Particularly, we adopt the Retinex theory and cast the enhancement problem as a constrained illumination estimation optimization, where we formulate perceptually bidirectional similarity as constraints on illumination and solve for the illumination which can recover the desired artifact-free enhancement results. In addition, we describe a video enhancement framework that adopts the presented illumination estimation for handling underexposed videos. To this end, a probabilistic approach is introduced to propagate illuminations of sampled keyframes to the entire video by tackling a Bayesian Maximum A Posteriori problem. Extensive experiments demonstrate the superiority of our method over the state-of-the-art methods.
Submission history
From: Qing Zhang [view email][v1] Thu, 25 Jul 2019 12:01:59 UTC (17,501 KB)
[v2] Wed, 30 Oct 2019 05:02:12 UTC (16,527 KB)
[v3] Wed, 8 Jul 2020 12:56:44 UTC (17,829 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.