Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 29 Jul 2019]
Title:Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future Directions
View PDFAbstract:Geospatial big data plays a major role in the era of big data, as most data today are inherently spatial, collected with ubiquitous location-aware sensors. Efficiently collecting, managing, storing, and analyzing geospatial data streams enables development of new decision-support systems and provides unprecedented opportunities for business, science, and engineering. However, handling the "Vs" (volume, variety, velocity, veracity, and value) of big data is a challenging task. This is especially true for geospatial big data, since the massive datasets must be analyzed in the context of space and time. High performance computing (HPC) provides an essential solution to geospatial big data challenges. This chapter first summarizes four key aspects for handling geospatial big data with HPC and then briefly reviews existing HPC-related platforms and tools for geospatial big data processing. Lastly, future research directions in using HPC for geospatial big data handling are discussed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.