Computer Science > Machine Learning
[Submitted on 31 Jul 2019]
Title:A Novel Multiple Classifier Generation and Combination Framework Based on Fuzzy Clustering and Individualized Ensemble Construction
View PDFAbstract:Multiple classifier system (MCS) has become a successful alternative for improving classification performance. However, studies have shown inconsistent results for different MCSs, and it is often difficult to predict which MCS algorithm works the best on a particular problem. We believe that the two crucial steps of MCS - base classifier generation and multiple classifier combination, need to be designed coordinately to produce robust results.
In this work, we show that for different testing instances, better classifiers may be trained from different subdomains of training instances including, for example, neighboring instances of the testing instance, or even instances far away from the testing instance. To utilize this intuition, we propose Individualized Classifier Ensemble (ICE). ICE groups training data into overlapping clusters, builds a classifier for each cluster, and then associates each training instance to the top-performing models while taking into account model types and frequency. In testing, ICE finds the k most similar training instances for a testing instance, then predicts class label of the testing instance by averaging the prediction from models associated with these training instances.
Evaluation results on 49 benchmarks show that ICE has a stable improvement on a significant proportion of datasets over existing MCS methods. ICE provides a novel choice of utilizing internal patterns among instances to improve classification, and can be easily combined with various classification models and applied to many application domains.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.