Computer Science > Human-Computer Interaction
[Submitted on 1 Aug 2019]
Title:Illusion of Causality in Visualized Data
View PDFAbstract:Students who eat breakfast more frequently tend to have a higher grade point average. From this data, many people might confidently state that a before-school breakfast program would lead to higher grades. This is a reasoning error, because correlation does not necessarily indicate causation -- X and Y can be correlated without one directly causing the other. While this error is pervasive, its prevalence might be amplified or mitigated by the way that the data is presented to a viewer. Across three crowdsourced experiments, we examined whether how simple data relations are presented would mitigate this reasoning error. The first experiment tested examples similar to the breakfast-GPA relation, varying in the plausibility of the causal link. We asked participants to rate their level of agreement that the relation was correlated, which they rated appropriately as high. However, participants also expressed high agreement with a causal interpretation of the data. Levels of support for the causal interpretation were not equally strong across visualization types: causality ratings were highest for text descriptions and bar graphs, but weaker for scatter plots. But is this effect driven by bar graphs aggregating data into two groups or by the visual encoding type? We isolated data aggregation versus visual encoding type and examined their individual effect on perceived causality. Overall, different visualization designs afford different cognitive reasoning affordances across the same data. High levels of data aggregation by graphs tend to be associated with higher perceived causality in data. Participants perceived line and dot visual encodings as more causal than bar encodings. Our results demonstrate how some visualization designs trigger stronger causal links while choosing others can help mitigate unwarranted perceptions of causality.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.