Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Aug 2019 (v1), last revised 16 Apr 2020 (this version, v3)]
Title:Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation
View PDFAbstract:In this work, we propose a novel Cycle In Cycle Generative Adversarial Network (C$^2$GAN) for the task of keypoint-guided image generation. The proposed C$^2$GAN is a cross-modal framework exploring a joint exploitation of the keypoint and the image data in an interactive manner. C$^2$GAN contains two different types of generators, i.e., keypoint-oriented generator and image-oriented generator. Both of them are mutually connected in an end-to-end learnable fashion and explicitly form three cycled sub-networks, i.e., one image generation cycle and two keypoint generation cycles. Each cycle not only aims at reconstructing the input domain, and also produces useful output involving in the generation of another cycle. By so doing, the cycles constrain each other implicitly, which provides complementary information from the two different modalities and brings extra supervision across cycles, thus facilitating more robust optimization of the whole network. Extensive experimental results on two publicly available datasets, i.e., Radboud Faces and Market-1501, demonstrate that our approach is effective to generate more photo-realistic images compared with state-of-the-art models.
Submission history
From: Hao Tang [view email][v1] Fri, 2 Aug 2019 18:21:28 UTC (8,201 KB)
[v2] Sat, 14 Sep 2019 17:49:23 UTC (8,201 KB)
[v3] Thu, 16 Apr 2020 00:53:39 UTC (8,201 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.