Computer Science > Machine Learning
[Submitted on 21 Aug 2019]
Title:Decentralized Federated Learning: A Segmented Gossip Approach
View PDFAbstract:The emerging concern about data privacy and security has motivated the proposal of federated learning, which allows nodes to only synchronize the locally-trained models instead their own original data. Conventional federated learning architecture, inherited from the parameter server design, relies on highly centralized topologies and the assumption of large nodes-to-server bandwidths. However, in real-world federated learning scenarios the network capacities between nodes are highly uniformly distributed and smaller than that in a datacenter. It is of great challenges for conventional federated learning approaches to efficiently utilize network capacities between nodes. In this paper, we propose a model segment level decentralized federated learning to tackle this problem. In particular, we propose a segmented gossip approach, which not only makes full utilization of node-to-node bandwidth, but also has good training convergence. The experimental results show that even the training time can be highly reduced as compared to centralized federated learning.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.