Mathematics > Numerical Analysis
[Submitted on 26 Aug 2019]
Title:An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws
View PDFAbstract:We present an a posteriori error analysis for one-dimensional random hyperbolic systems of conservation laws. For the discretization of the random space we consider the Non-Intrusive Spectral Projection method, the spatio-temporal discretization uses the Runge--Kutta Discontinuous Galerkin method. We derive an a posteriori error estimator using smooth reconstructions of the numerical solution, which combined with the relative entropy stability framework yields computable error bounds for the space-stochastic discretization error. Moreover, we show that the estimator admits a splitting into a stochastic and deterministic part.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.