Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 8 Sep 2019]
Title:Characterizing the Performance of Executing Many-tasks on Summit
View PDFAbstract:Many scientific workloads are comprised of many tasks, where each task is an independent simulation or analysis of data. The execution of millions of tasks on heterogeneous HPC platforms requires scalable dynamic resource management and multi-level scheduling. RADICAL-Pilot (RP) -- an implementation of the Pilot abstraction, addresses these challenges and serves as an effective runtime system to execute workloads comprised of many tasks. In this paper, we characterize the performance of executing many tasks using RP when interfaced with JSM and PRRTE on Summit: RP is responsible for resource management and task scheduling on acquired resource; JSM or PRRTE enact the placement of launching of scheduled tasks. Our experiments provide lower bounds on the performance of RP when integrated with JSM and PRRTE. Specifically, for workloads comprised of homogeneous single-core, 15 minutes-long tasks we find that: PRRTE scales better than JSM for > O(1000) tasks; PRRTE overheads are negligible; and PRRTE supports optimizations that lower the impact of overheads and enable resource utilization of 63% when executing O(16K), 1-core tasks over 404 compute nodes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.