Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Sep 2019]
Title:DensePoint: Learning Densely Contextual Representation for Efficient Point Cloud Processing
View PDFAbstract:Point cloud processing is very challenging, as the diverse shapes formed by irregular points are often indistinguishable. A thorough grasp of the elusive shape requires sufficiently contextual semantic information, yet few works devote to this. Here we propose DensePoint, a general architecture to learn densely contextual representation for point cloud processing. Technically, it extends regular grid CNN to irregular point configuration by generalizing a convolution operator, which holds the permutation invariance of points, and achieves efficient inductive learning of local patterns. Architecturally, it finds inspiration from dense connection mode, to repeatedly aggregate multi-level and multi-scale semantics in a deep hierarchy. As a result, densely contextual information along with rich semantics, can be acquired by DensePoint in an organic manner, making it highly effective. Extensive experiments on challenging benchmarks across four tasks, as well as thorough model analysis, verify DensePoint achieves the state of the arts.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.