Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Sep 2019]
Title:RefineFace: Refinement Neural Network for High Performance Face Detection
View PDFAbstract:Face detection has achieved significant progress in recent years. However, high performance face detection still remains a very challenging problem, especially when there exists many tiny faces. In this paper, we present a single-shot refinement face detector namely RefineFace to achieve high performance. Specifically, it consists of five modules: Selective Two-step Regression (STR), Selective Two-step Classification (STC), Scale-aware Margin Loss (SML), Feature Supervision Module (FSM) and Receptive Field Enhancement (RFE). To enhance the regression ability for high location accuracy, STR coarsely adjusts locations and sizes of anchors from high level detection layers to provide better initialization for subsequent regressor. To improve the classification ability for high recall efficiency, STC first filters out most simple negatives from low level detection layers to reduce search space for subsequent classifier, then SML is applied to better distinguish faces from background at various scales and FSM is introduced to let the backbone learn more discriminative features for classification. Besides, RFE is presented to provide more diverse receptive field to better capture faces in some extreme poses. Extensive experiments conducted on WIDER FACE, AFW, PASCAL Face, FDDB, MAFA demonstrate that our method achieves state-of-the-art results and runs at $37.3$ FPS with ResNet-18 for VGA-resolution images.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.