Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Oct 2019 (v1), last revised 19 Oct 2019 (this version, v2)]
Title:Adaptively Denoising Proposal Collection for Weakly Supervised Object Localization
View PDFAbstract:In this paper, we address the problem of weakly supervised object localization (WSL), which trains a detection network on the dataset with only image-level annotations. The proposed approach is built on the observation that the proposal set from the training dataset is a collection of background, object parts, and objects. Several strategies are taken to adaptively eliminate the noisy proposals and generate pseudo object-level annotations for the weakly labeled dataset. A multiple instance learning (MIL) algorithm enhanced by mask-out strategy is adopted to collect the class-specific object proposals, which are then utilized to adapt a pre-trained classification network to a detection network. In addition, the detection results from the detection network are re-weighted by jointly considering the detection scores and the overlap ratio of proposals in a proposal subset optimization framework. The optimal proposals work as object-level labels that enable a pseudo-strongly supervised dataset for training the detection network. Consequently, we establish a fully adaptive detection network. Extensive evaluations on the PASCAL VOC 2007 and 2012 datasets demonstrate a significant improvement compared with the state-of-the-art methods.
Submission history
From: Wenju Xu [view email][v1] Fri, 4 Oct 2019 18:42:32 UTC (5,652 KB)
[v2] Sat, 19 Oct 2019 21:12:53 UTC (5,654 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.