Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Oct 2019]
Title:Depth Completion from Sparse LiDAR Data with Depth-Normal Constraints
View PDFAbstract:Depth completion aims to recover dense depth maps from sparse depth measurements. It is of increasing importance for autonomous driving and draws increasing attention from the vision community. Most of existing methods directly train a network to learn a mapping from sparse depth inputs to dense depth maps, which has difficulties in utilizing the 3D geometric constraints and handling the practical sensor noises. In this paper, to regularize the depth completion and improve the robustness against noise, we propose a unified CNN framework that 1) models the geometric constraints between depth and surface normal in a diffusion module and 2) predicts the confidence of sparse LiDAR measurements to mitigate the impact of noise. Specifically, our encoder-decoder backbone predicts surface normals, coarse depth and confidence of LiDAR inputs simultaneously, which are subsequently inputted into our diffusion refinement module to obtain the final completion results. Extensive experiments on KITTI depth completion dataset and NYU-Depth-V2 dataset demonstrate that our method achieves state-of-the-art performance. Further ablation study and analysis give more insights into the proposed method and demonstrate the generalization capability and stability of our model.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.