Computer Science > Machine Learning
[Submitted on 16 Oct 2019 (v1), last revised 30 Jul 2020 (this version, v2)]
Title:Adaptive Trade-Offs in Off-Policy Learning
View PDFAbstract:A great variety of off-policy learning algorithms exist in the literature, and new breakthroughs in this area continue to be made, improving theoretical understanding and yielding state-of-the-art reinforcement learning algorithms. In this paper, we take a unifying view of this space of algorithms, and consider their trade-offs of three fundamental quantities: update variance, fixed-point bias, and contraction rate. This leads to new perspectives of existing methods, and also naturally yields novel algorithms for off-policy evaluation and control. We develop one such algorithm, C-trace, demonstrating that it is able to more efficiently make these trade-offs than existing methods in use, and that it can be scaled to yield state-of-the-art performance in large-scale environments.
Submission history
From: Mark Rowland [view email][v1] Wed, 16 Oct 2019 17:09:19 UTC (8,552 KB)
[v2] Thu, 30 Jul 2020 11:24:06 UTC (10,399 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.