Computer Science > Machine Learning
[Submitted on 9 Nov 2019]
Title:Early Predictions for Medical Crowdfunding: A Deep Learning Approach Using Diverse Inputs
View PDFAbstract:Medical crowdfunding is a popular channel for people needing financial help paying medical bills to collect donations from large numbers of people. However, large heterogeneity exists in donations across cases, and fundraisers face significant uncertainty in whether their crowdfunding campaigns can meet fundraising goals. Therefore, it is important to provide early warnings for fundraisers if such a channel will eventually fail. In this study, we aim to develop novel algorithms to provide accurate and timely predictions of fundraising performance, to better inform fundraisers. In particular, we propose a new approach to combine time-series features and time-invariant features in the deep learning model, to process diverse sources of input data. Compared with baseline models, our model achieves better accuracy and requires a shorter observation window of the time-varying features from the campaign launch to provide robust predictions with high confidence. To extract interpretable insights, we further conduct a multivariate time-series clustering analysis and identify four typical temporal donation patterns. This demonstrates the heterogeneity in the features and how they relate to the fundraising outcome. The prediction model and the interpretable insights can be applied to assist fundraisers with better promoting their fundraising campaigns and can potentially help crowdfunding platforms to provide more timely feedback to all fundraisers. Our proposed framework is also generalizable to other fields where diverse structured and unstructured data are valuable for predictions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.