Computer Science > Machine Learning
[Submitted on 17 Nov 2019 (v1), last revised 17 Dec 2020 (this version, v2)]
Title:Prototypical Networks for Multi-Label Learning
View PDFAbstract:We propose to formulate multi-label learning as a estimation of class distribution in a non-linear embedding space, where for each label, its positive data embeddings and negative data embeddings distribute compactly to form a positive component and negative component respectively, while the positive component and negative component are pushed away from each other. Duo to the shared embedding space for all labels, the distribution of embeddings preserves instances' label membership and feature matrix, thus encodes the feature-label relation and nonlinear label dependency. Labels of a given instance are inferred in the embedding space by measuring the probabilities of its belongingness to the positive or negative components of each label. Specially, the probabilities are modeled as the distance from the given instance to representative positive or negative prototypes. Extensive experiments validate that the proposed solution can provide distinctively more accurate multi-label classification than other state-of-the-art algorithms.
Submission history
From: Zhuo Yang [view email][v1] Sun, 17 Nov 2019 10:16:45 UTC (905 KB)
[v2] Thu, 17 Dec 2020 07:16:46 UTC (4,874 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.