Computer Science > Cryptography and Security
[Submitted on 2 Dec 2019 (v1), last revised 29 Jan 2020 (this version, v2)]
Title:The supersingular isogeny problem in genus 2 and beyond
View PDFAbstract:Let $A/\overline{\mathbb{F}}\_p$ and $A'/\overline{\mathbb{F}}\_p$ be supersingular principally polarized abelian varieties of dimension $g>1$. For any prime $\ell \ne p$, we give an algorithm that finds a path $\phi \colon A \rightarrow A'$ in the $(\ell, \dots , \ell)$-isogeny graph in $\widetilde{O}(p^{g-1})$ group operations on a classical computer, and $\widetilde{O}(\sqrt{p^{g-1}})$ calls to the Grover oracle on a quantum computer. The idea is to find paths from $A$ and $A'$ to nodes that correspond to products of lower dimensional abelian varieties, and to recurse down in dimension until an elliptic path-finding algorithm (such as Delfs--Galbraith) can be invoked to connect the paths in dimension $g=1$. In the general case where $A$ and $A'$ are any two nodes in the graph, this algorithm presents an asymptotic improvement over all of the algorithms in the current literature. In the special case where $A$ and $A'$ are a known and relatively small number of steps away from each other (as is the case in higher dimensional analogues of SIDH), it gives an asymptotic improvement over the quantum claw finding algorithms and an asymptotic improvement over the classical van Oorschot--Wiener algorithm.
Submission history
From: Benjamin Smith [view email] [via CCSD proxy][v1] Mon, 2 Dec 2019 11:56:09 UTC (40 KB)
[v2] Wed, 29 Jan 2020 10:14:04 UTC (40 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.