Statistics > Machine Learning
[Submitted on 10 Dec 2019 (v1), last revised 1 Mar 2021 (this version, v4)]
Title:Privacy-preserving data sharing via probabilistic modelling
View PDFAbstract:Differential privacy allows quantifying privacy loss resulting from accessing sensitive personal data. Repeated accesses to underlying data incur increasing loss. Releasing data as privacy-preserving synthetic data would avoid this limitation, but would leave open the problem of designing what kind of synthetic data. We propose formulating the problem of private data release through probabilistic modelling. This approach transforms the problem of designing the synthetic data into choosing a model for the data, allowing also including prior knowledge, which improves the quality of the synthetic data. We demonstrate empirically, in an epidemiological study, that statistical discoveries can be reliably reproduced from the synthetic data. We expect the method to have broad use in creating high-quality anonymized data twins of key data sets for research.
Submission history
From: Joonas Jälkö [view email][v1] Tue, 10 Dec 2019 01:21:32 UTC (108 KB)
[v2] Wed, 29 Jan 2020 10:09:43 UTC (108 KB)
[v3] Fri, 2 Oct 2020 07:39:45 UTC (99 KB)
[v4] Mon, 1 Mar 2021 09:26:54 UTC (197 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.