Computer Science > Computation and Language
[Submitted on 3 Jan 2020 (v1), last revised 16 Jan 2020 (this version, v2)]
Title:Read Beyond the Lines: Understanding the Implied Textual Meaning via a Skim and Intensive Reading Model
View PDFAbstract:The nonliteral interpretation of a text is hard to be understood by machine models due to its high context-sensitivity and heavy usage of figurative language. In this study, inspired by human reading comprehension, we propose a novel, simple, and effective deep neural framework, called Skim and Intensive Reading Model (SIRM), for figuring out implied textual meaning. The proposed SIRM consists of two main components, namely the skim reading component and intensive reading component. N-gram features are quickly extracted from the skim reading component, which is a combination of several convolutional neural networks, as skim (entire) information. An intensive reading component enables a hierarchical investigation for both local (sentence) and global (paragraph) representation, which encapsulates the current embedding and the contextual information with a dense connection. More specifically, the contextual information includes the near-neighbor information and the skim information mentioned above. Finally, besides the normal training loss function, we employ an adversarial loss function as a penalty over the skim reading component to eliminate noisy information arisen from special figurative words in the training data. To verify the effectiveness, robustness, and efficiency of the proposed architecture, we conduct extensive comparative experiments on several sarcasm benchmarks and an industrial spam dataset with metaphors. Experimental results indicate that (1) the proposed model, which benefits from context modeling and consideration of figurative language, outperforms existing state-of-the-art solutions, with comparable parameter scale and training speed; (2) the SIRM yields superior robustness in terms of parameter size sensitivity; (3) compared with ablation and addition variants of the SIRM, the final framework is efficient enough.
Submission history
From: Guoxiu He [view email][v1] Fri, 3 Jan 2020 03:43:35 UTC (391 KB)
[v2] Thu, 16 Jan 2020 14:27:21 UTC (392 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.