Computer Science > Programming Languages
[Submitted on 9 Dec 2004 (v1), last revised 2 Jan 2005 (this version, v2)]
Title:An Efficient and Flexible Engine for Computing Fixed Points
View PDFAbstract: An efficient and flexible engine for computing fixed points is critical for many practical applications. In this paper, we firstly present a goal-directed fixed point computation strategy in the logic programming paradigm. The strategy adopts a tabled resolution (or memorized resolution) to mimic the efficient semi-naive bottom-up computation. Its main idea is to dynamically identify and record those clauses that will lead to recursive variant calls, and then repetitively apply those alternatives incrementally until the fixed point is reached. Secondly, there are many situations in which a fixed point contains a large number or even infinite number of solutions. In these cases, a fixed point computation engine may not be efficient enough or feasible at all. We present a mode-declaration scheme which provides the capabilities to reduce a fixed point from a big solution set to a preferred small one, or from an infeasible infinite set to a finite one. The mode declaration scheme can be characterized as a meta-level operation over the original fixed point. We show the correctness of the mode declaration scheme. Thirdly, the mode-declaration scheme provides a new declarative method for dynamic programming, which is typically used for solving optimization problems. There is no need to define the value of an optimal solution recursively, instead, defining a general solution suffices. The optimal value as well as its corresponding concrete solution can be derived implicitly and automatically using a mode-directed fixed point computation engine. Finally, this fixed point computation engine has been successfully implemented in a commercial Prolog system. Experimental results are shown to indicate that the mode declaration improves both time and space performances in solving dynamic programming problems.
Submission history
From: Hai-Feng Guo [view email][v1] Thu, 9 Dec 2004 22:59:37 UTC (55 KB)
[v2] Sun, 2 Jan 2005 21:18:49 UTC (56 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.