Computer Science > Networking and Internet Architecture
[Submitted on 15 Apr 2005]
Title:Rendezvous Regions: A Scalable Architecture for Resource Discovery and Service Location in Large-Scale Mobile Networks
View PDFAbstract: In large-scale wireless networks such as mobile ad hoc and sensor networks, efficient and robust service discovery and data-access mechanisms are both essential and challenging. Rendezvous-based mechanisms provide a valuable solution for provisioning a wide range of services. In this paper, we describe Rendezvous Regions (RRs) - a novel scalable rendezvous-based architecture for wireless networks. RR is a general architecture proposed for service location and bootstrapping in ad hoc networks, in addition to data-centric storage, configuration, and task assignment in sensor networks. In RR the network topology is divided into geographical regions, where each region is responsible for a set of keys representing the services or data of interest. Each key is mapped to a region based on a hash-table-like mapping scheme. A few elected nodes inside each region are responsible for maintaining the mapped information. The service or data provider stores the information in the corresponding region and the seekers retrieve it from there. We run extensive detailed simulations, and high-level simulations and analysis, to investigate the design space, and study the architecture in various environments including node mobility and failures. We evaluate it against other approaches to identify its merits and limitations. The results show high success rate and low overhead even with dynamics. RR scales to large number of nodes and is highly robust and efficient to node failures. It is also robust to node mobility and location inaccuracy with a significant advantage over point-based rendezvous mechanisms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.