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Abstract— This paper develops a diversity-multiplexing trade-
off (DMT) over a bidirectional random relay set in a wireless
network where the distribution of all nodes is a stationary
Poisson point process. This is a nontrivial extension of theDMT
because it requires consideration of the cooperation (or lack
thereof) of relay nodes, the traffic pattern and the time allocation
between the forward and reverse traffic directions. We then use
this tradeoff to compare the DMTs of traditional time-divis ion
multihop (TDMH) and network coding (NC). Our main results
are the derivations of the DMT for both TDMH and NC. This
shows, surprisingly, that if relay nodes collaborate NC does not
always have a better DMT than TDMH since it is difficult to
simultaneously achieve bidirectional transmit diversity for both
source nodes. In fact, for certain traffic patterns NC can have
a worse DMT due to suboptimal time allocation between the
forward and reverse transmission directions.

I. I NTRODUCTION

The fundamental tradeoff between diversity and multiplex-
ing gain for point-to-point multiple input and multiple output
(MIMO) channels was found in [1], and has become a popular
metric for comparing transmission protocols. In this work,
our first objective is to extend the DMT to the scenario
of a multihop bidirectional relaying wireless network. Our
second objective is to apply this to the specific comparison
of traditional time-division relaying and network coding,with
the goal of learning when or how to use each of those protocols
to acquire a better DMT.

Our model considers the practical situation of two com-
municating nodes in an ad hoc network, whereby each is
both the source and the destination for the other. These nodes
pairs wish to exchange their packets over one or more relay
nodes because the direct channel between them is weak. There
are many approaches to exchanging information between the
two nodes, but in order to investigate a non-trivial DMT
problem, we assume that the same frequency band is used in
both directions and that all nodes are half-duplex, i.e., cannot
transmit and receive simultaneously. Specifically, we consider
two multihop transmission protocols. The first approach is
the traditional approach whereby the two sources share the
relays in time. This so-called time-division multihop (TDMH)
approach requires four time slots to exchange a packet in each
direction. The second approach is multihop network coding

(NC)1 [2]–[4], which is known to be more efficient than
TDMH, and indeed saves one time slot compared to TDMH
[5]. Both of the approaches are illustrated in Fig. 1(b).

The idea of wireless NC descends from Ahlswedeet al.
[6] for improving the capacity of wired networks. By taking
advantage of the broadcast nature of the wireless medium,
NC achieves a significant throughput gain under certain
circumstances [4], [7], [8]. It also can be used to exploit
cooperative diversity between source and destination nodes
[9], [10]. Since NC is able to provide diversity gain as well as
throughput gain, it motivates study on how the DMT of NC
behaves and if it has better tradeoff compared to TDMH. For
example, does the above noted throughput gain of NC come
at the expense of diversity gain? Importantly, we consider
bidirectional transmission over a random number of relays –
the nodes in the networks form a stationary Poisson point
process and there exits a random set of idle nodes which can
assist to route packets between the two source nodes. This
plurality of relays may cooperate in a number of different
ways or not at all, and each cooperation scenario leads to a
different DMT result for both NC and TDMH.

The key to deriving the DMT of TDMH and NC is a suitably
defined outage event, defined as a failure of information
exchange between the two source nodes. The DMTs of TDMH
and NC here are quite different from the previous multihop
DMT works (typically see [5], [11]–[13] and the references
therein) due to their dependence on the traffic pattern, time
allocation of bidirectional transmission, as well as the average
number of available relay nodes in the random relay set.
The main results of this paper are two propositions which
respectively provide the DMTs of TDMH and NC. These
propositions demonstrate that NC does not always provide
a better DMT than TDMH in the relay collaboration case
because bidirectional transmit diversity cannot be exploited
simultaneously: using an optimally selected relay node to
receive and transmit (or broadcast) is practically preferable
since it achieves the same DMT and no relay coordination
is required. NC could in fact have a worse DMT if there
is suboptimal time allocation for a certain traffic pattern.

1In this paper, we only discuss the DMT problem of network coding with
XORing on the MAC layer, which is so called “digital network coding”. The
DMT problem of analog network coding is out of the scope in this paper.
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Intuitively, if the offered traffic load is much higher in the
forward direction than the reverse direction relative to one of
the source nodes, then bidirectional network coding may not
be helpful for that source since it presumes a symmetric data
rate.

II. SYSTEM MODEL OF BIDIRECTIONAL RANDOM

RELAYING

The problem of information exchange by multihop routing
can be fundamentally characterized by a bidirectional relaying
system, as illustrated in Fig. 1. The two source nodesXA and
XB would like to exchange their packetsWA andWB over
multiple relay nodes by TDMH and NC. TDMH needs four
time slots to route the two packets and NC needs only three
time slots due to broadcasting a XOR-ed packetWA⊕WB to
the two source nodes. Here the nodes in the ad hoc network
are assumed to form a stationary Poisson point process (PPP)
of intensityλ. The network is also assumed to operate a slotted
ALOHA protocol with transmission probabilityp, wherep ∈
(0, 12 ) so that the transmitters are a stationary thinning PPP
of intensity λt = λ p, denoted byΦt = {Xi, i ∈ N}.
The idle nodes (i.e., nodes are not transmitting or receiving)
are a stationary thinning PPP of intensityλr = λ (1 − 2p),
denoted byΦr = {Yj , j ∈ N}2. Those idle nodes can perform
like relays which are able to assist transmissions of other
nodes. Specifically, we consider there exists an “available” 3

random relay regimeDAB between nodesXA andXB. Let
the Lebesgue measure ofDAB denote byνr and thus the
maximum average number of available relay nodes inDAB

is νr λr. Furthermore, we assume all nodes inDAB are able
to collaborate under reasonable communication overhead so
that every relay node can share its received information with
others. In this context,DAB virtually becomes a big relay
node equipped with multiple antennas so that the channels
from node A toDAB become a single-input-multiple-output
(SIMO) channel (or a MISO channel fromDAB to node A).

In this work we also assume there are no direct channels be-
tween the two source nodes, otherwise, mutihop is not needed.
All nodes in the network are assumed to behalf-duplex (nodes
cannot transmit and receive at the same time). The fading
channel gains between any two nodesX andY , denoted by
{hXY }, are independent and identically distributed (i.i.d.),
reciprocal and a zero mean, circularly symmetric complex
Gaussian random variables with unit variance,{CXY } denote
their corresponding channel capacities, and all transmitters
have the same transmit powerρ0. In order to facilitate the
following descriptions and analysis, here diversity gaind and
multiplexing gainm in [1] need to be redefined in our notation
as follows:

d , − lim
γ̄→∞

log ǫ(γ̄)

log γ̄
and m , lim

γ̄→∞

R(γ̄)

log γ̄
,

2In this paper, nodeXi or Yj represents the node itself as well as its
location in the network.

3where “available” means any relay node inDAB can successfully decode
the information from both source nodes.

whereǫ is the outage probability ofinformation exchange in
bidirectional relaying, R is the equivalent end-to-end sum
rate of two source nodes, and γ̄ is the average signal-to-
interference-plus-noise (SINR) ratio without fading, which can
be written as

γ̄ = E[γ] = E

[

ρ0
IΦt

+N0

]

, (1)

whereIΦt
=

∑

Xi∈(Φt\X0)
ρ0 |hXi

|2 ‖Xi‖−α is the aggregate
interference of a receive node that is a Poisson shot noise
process4, ‖Xi‖ denotes the distance between transmitterXi

and the origin, andα > 2 is the path loss exponent, andN0 is
the noise power. Note thatǫ andR are not defined based on
traditional point-to-point transmission. In this work, they are
defined by anend-to-end fashion because TDMH and NC are
decode-and-forward multihop-based protocols. In addition, in
Fig. 1(b) we call the end-to-end rate from the left node to
the right node theforward rate while thebackward rate is
naturally the end-to-end rate in the opposite direction. The
traffic pattern parameterµ is the ratio of the backward to the
forward rate, i.e.,µ = RBA/RAB.

Since the system we study here is aimed at information
exchange over bidirectional relaying, it is important to ensure
that the two source nodes in Fig. 1 can successfully decode
their packets at the same time. With this concept in mind,
the reasonable way to declare an outage event happening in
a bidirectional relaying system is whenever either one source
node or both source nodes cannot successfully decode the de-
sired packet. Therefore, the outage probability of transmission
protocolS for the system in Fig. 1 is defined as

ǫS , P [ES,f ∪ ES,b] , (2)

whereES,f , {τf IS,f < RAB} andES,b , {τb IS,b < RBA}
are the outage events of forward and backward transmission,
and {τf , τb : τf , τb ∈ [0, 1], τf + τb = 1} are time-allocation
parameters for forward and backward transmission, respec-
tively, and{IS,f , IS,b} are respectively forward and backward
mutual information and studied in the following section.

III. M UTUAL INFORMATION OF TDMH AND NC

In this section we investigate the mutual information for
TDMH and NC under different relay collaboration scenarios.
We first start with TDMH.

A. Mutual Information of TDMH

Considering relay collaboration and a Gaussian input dis-
tribution, then the forward and backward mutual information
for TDMH in a bidirectional random relaying set are shown
to be

ITDMH,f = ITDMH,b =
1

2
min {I1, I2} , (3)

4The Poisson shot noise process for receiver nodeYj should be expressed
asIΦt =

P

Xi∈(Φt\X0)
ρ0 |hXiYj

|2 ‖Xi−Yj‖−α. SinceΦt is stationary,
according to Slivnyak’s theorem [14] the statistics of signal reception seen by
receiverYj is the same as that seen by any other receivers in the network.
So the Poisson shot noise here is evaluated at the reference receiver located
at the origin.
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Fig. 1. (a) The bidirectional relaying system: the relay nodes in the random relay setDAB between source nodesXA andXB are a stationary PPP of
intensity λr . (b) The equivalent model. Information exchange between source node A and B is through the intermediate relay node setDAB . RAB and
RBA denote the end-to-endforward and backward rates, respectively.

where I1 , log
(

1 + γ
∑

YD∈DAB
|hAD|2 ‖XA − YD‖−α

)

,
I2 , log

(

1 + γ
∑

YD∈DAB
|hDB|

2 ‖XB − YD‖−α
)

because
the forward or backward transmission first virtually passes
through a SIMO channel and then through a MISO channel.
Note that coefficient12 means the forward or backward data
stream needs 2 time slots. Since all nodes have the same power
and all channels are reciprocal, the forward and backward
mutual information are equal.

In the case of relay noncooperation, an optimal relay node
should be selected to assist bidirectional transmission bythe
following criterion:

YD∗

TDMH
= arg max

YD∈DAB

(

‖XA − YD‖α

|hAD|2
+

‖XB − YD‖α

|hBD|2

)−1

,

(4)
The selection criterion in (4) is based on the idea of finding
a relay node with the maximum end-to-end sum rates. Once
YD∗

TDMH
is determined, its corresponding forward and backward

mutual information are the same as in (3) with

I1 = log
(

1 + γ |hAD∗

TDMH
|2 ‖XA − YD∗

TDMH
‖−α

)

,

I2 = log
(

1 + γ |hBD∗

TDMH
|2 ‖XB − YD∗

TDMH
‖−α

)

.

Finding an optimal relay can also provide the same diversity
order due to exploited selection diversity. This result will be
proved in the sequel.

B. Mutual Information of NC

For NC, its forward and backward mutual information can
be shown as

INC,f =
2

3
min

{

I1,min
{

Ĩ1, Ĩ2

}}

, (5a)

INC,b =
2

3
min

{

I2,min
{

Ĩ1, Ĩ2

}}

, (5b)

where Ĩ1 = log
(

1 + γ |
∑

YD∈DAB
hAD‖XA − YD‖−α/2|2

)

,
Ĩ2 = log

(

1 + γ |
∑

YD∈DAB
hBD‖XB − YD‖−α/2|2

)

, and
the coefficient 23 is due to two data streams sharing three
time slots.Ĩ1 and Ĩ2 stand for the mutual information for the
forward broadcast channel and backward broadcast channel,
respectively. They are calculated by the sum of the channel
gains betweenDAB and their respective destination source
nodes since the relays are unable to provide the transmit

diversity for both source nodes simultaneously. Accordingly, it
results in a problem that the transmit diversity for both source
nodes is unable to be exploited in the broadcast stage. This
problem can be alleviated by using an optimal relay node to
broadcast, which can be selected according to the following
criterion:

YD∗

NC
= arg max

YD∈DAB

min{|hDA|
2 ‖XA − YD‖−α,

|hDB|
2 ‖XB − YD‖−α}. (6)

The above criterion is to select a relay node inDAB whose
achievable broadcast channel capacity is maximal [4].

By using YD∗

NC
found in (6) to broadcast, the forward

and backward mutual information in (5a) and (5b) can be
reduced toINC,f = INC,b = 2

3 min
{

Ĩ1, Ĩ2

}

since Ĩ1 =

log(1 + γ|hAD∗

NC
|2 ‖XA − YD∗

NC
‖−α) and Ĩ2 = log(1 +

γ|hBD∗

NC
|2 ‖XB − YD∗

NC
‖−α) so that we knowI1 ≥ Ĩ1 and

I2 ≥ Ĩ2 almost surely. On the other hand, in the case of
relay without collaboration what criterion we should follow
to select an optimal relay node? The basic idea is also to
search a relay node that can provide the maximum end-to-
end sum rate. For NC, the maximum end-to-end sum rate
happens whenever the bidirectional traffic is symmetric, i.e.,
RAB = RBA [4] [8]. In previous work [4], the maximum sum
rate of NC over relay nodeYD in terms of channel capacities
is 2(1/CAD+2/CDB)

−1. So the optimal relay nodeYD∗

NC
can

be equivalently selected by

YD∗

NC
= arg max

YD∈DAB

(

2
‖XB − YD‖α

|hBD|2
+

‖XA − YD‖α

|hAD|2

)−1

.

(7)
Therefore, according to (7) the forward and backward mutual
information for NC overYD∗

NC
can be found as

INC,f = INC,b =
2

3
min{Ĩ1, Ĩ2}, (8)

whereĨ1 = log(1+γ|hAD∗

NC
|2 ‖XA−YD∗

NC
‖−α), Ĩ2 = log(1+

γ|hBD∗

NC
|2 ‖XB − YD∗

NC
‖−α)) andYD∗

NC
is determined by (7).

IV. M AIN RESULTS OFDMT A NALYSIS

The cooperative diversity of time-division one-way relaying
has been investigated in [5] [13]. Here we investigate the



DMT in bidirectional relaying for TDMH and NC. Before
proceeding to the DMT analysis, we first recall the definition
of an outage event happening in a bidirectional relaying
system. According to (2) and using Boole’s inequality, a
bidirectional relaying system has the following inequality of
outage probability:

ǫS ≤ ǫS,f + ǫS,b , (9)

where S meansTDMH or NC, ǫS,f , P[ES,f ] and ǫS,b ,

P[ES,f ]. According to (9), the DMTs of TDMH and NC can be
derived in the following subsections. Note thatin the following
analysis, we use notation γ⋆x instead of γx in order to clearly
present the complicated expression of exponent x.

A. Diversity-Multiplexing Tradeoff of TDMH

The DMT of TDMH with or without relay collaboration is
presented in the following proposition.

Proposition1: ConsiderΦr ∩ DAB 6= ∅ and every relay
node in DAB collaborates. TDMH achieves the following
diversity-multiplexing tradeoff

d = (λr νr)

(

1−
2m

min{(1 + µ)τf , (1 + 1/µ)τb}

)

, (10)

wherem ∈ (0,min{(1 + µ)τf , (1 + 1/µ)τb}/2). If there is
no collaboration inDAB, then TDMH overYD∗

TDMH
is able to

achieve the DMT in (10) as well, whereYD∗

TDMH
denotes the

optimal relay node found by (4).
Proof: Let EA (EB) denote the event that the relay node

nodes inDAB cannot correctly decodeWA (WB) and Ec
A

(Ec
B) denote the complement ofEA (EB). Thus we have

ǫTDMH,f = P [ETDMH,f |EA]P[EA] + P [ETDMH,f |E
c
A]P[E

c
A]

= P[EA] + P [τfI2 < 2RAB]P[E
c
A],

where P[EA] = P [τfI1 < 2RAB]. Let RAB + RBA =
m log(γ) so thatRAB = m

1+µ log(γ). By using I1 and I2
in (3), we thus have

ǫTDMH,f ≤ 2E
[

P
[

min
{

eI1 , eI2
}

− 1 < γ ⋆ (df + 1)|γ
]]

(a)
·
≤ γ̄ ⋆ (λr νr df ) , (11)

for largeγ̄ andm ∈
(

0, 12 (1 + µ)τf
)

, wheredf , 2m/τf (1+
µ)−1 and(a) follows from Lemma 1 in Appendix. Similarly,
we can show

ǫTDMH,b
·
≤ γ̄ ⋆ (λr νr db) , (12)

for largeγ̄ andm ∈
(

0, 12 (1 + 1/µ)τb
)

, wheredb , 2m/(1+
1/µ)τb − 1. According to (9), it thus follows that

ǫTDMH
·
≤ γ̄ ⋆

[

λr νr

(

2m

min{(1 + µ)τf , (1 + 1/µ)τb}
− 1

)]

,

for large γ̄ andm ∈ (0, 12 min{(1 + µ)τf , (1 + 1/µ)τb}).
Now consider there is no collaboration inDAB. The optimal

relay nodeYD∗

TDMH
is selected according to (4). So we can obtain

ǫTDMH,f ≤ 2P[min{|hAD∗

TDMH
|2‖XA − YD∗

TDMH
‖−α,

|hBD∗

TDMH
|2‖XB − YD∗

TDMH
‖−α} < γ ⋆ df ].

SinceYD∗

TDMH
is optimal inDAB and all channels are indepen-

dent, we further have

ǫTDMH,f ≤

2
∏

YD∈DAB

P

[

(

‖XA − YD‖α

|hAD|2
+

‖XB − YD‖α

|hBD|2

)−1

< γ ⋆ df

]

(b)
·
≤ γ̄ ⋆ (λr νr df ) ,

where(b) follows from Lemma 2 in Appendix and Campbell’s
theorem [14]. Likewise, we can get a similar result forǫTDMH,b
as shown in (12). Thus optimal relay selection achieves the
same DMT with relay collaboration in (10).

B. Diversity-Multiplexing Tradeoff of NC

Using NC in bidirectional multi-relaying has three trans-
mission scenarios. If all relay nodes collaborate, in the first
two time slots NC can have receive diversity atDAB and
no transmit diversity in the third time slot if all relay nodes
join to broadcast. A better strategy in this case is to selectan
optimal relay to broadcast. For relay without collaboration, an
optimal relay should be found to route packets. The DMTs of
NC with these scenarios have been presented in the following
proposition.

Proposition2: SupposeΦr ∩DAB 6= ∅ and all relay nodes
in DAB collaborate to receive and then broadcast at the same
time. The following DMT is achieved by NC:

d = 1−
3m

2min{(1 + µ)τf , (1 + 1/µ)τb}
, (13)

wherem ∈
(

0, 23 min{(1 + µ)τf , (1 + 1/µ)τb}
)

. If an optimal
relay node is selected by (6) to broadcast, NC achieves the
following diversity-multiplexing tradeoff:

d = (λr νr)

(

1−
3m

2min{(1 + µ)τf , (1 + 1/µ)τb}

)

. (14)

Furthermore, if an optimal relay node is selected to receive
and broadcast then the DMT in (14) is achieved as well.

Proof: By the definition of outage and using the same
definitions ofEA andEB in the proof of Proposition 1. So the
outage probability of forward transmission can be shown as

ǫNC,f ≤ P[EA] + P

[

2τf min{Ĩ2, Ĩ1} < 3RAB

]

≤ P[EA] + P

[

2τf Ĩ2 < 3RAB

]

+ P

[

2τf Ĩ1 < 3RAB

]

,

whereP[EA] = P
[

2
3τfI1 < RAB

]

. Let RAB = m
1+µ log(γ)

and consider the first case that every relay node collaborates
to receive and then broadcasts without collaboration simulta-
neously. For largēγ and using Lemma 1, it follows that

ǫNC,f ≤ γ̄ ⋆
(

λr νr d̃f

)

+ (Ξb1 + Ξb2)
(

γ̄ ⋆ d̃f

)

·
≤ γ̄ ⋆ d̃f , (15)

for largeγ̄ andm ∈ (0, 2(1+µ)τf/3), where1/Ξb1 and1/Ξb2

are respectively the variances of|
∑

YD∈DAB
hDA ‖XA −



YD‖−α/2|2 and |
∑

YD∈DAB
hDB ‖XB − YD‖−α/2|2, and

d̃f , 3m/2(1 + µ)τf − 1. Similarly, we can showǫNC,b
·
≤

γ̄ ⋆ d̃b, for large γ̄ and m ∈ (0, 2(1 + 1/µ)τb/3), where
d̃b , 3m/2(1 + 1/µ)τb − 1. Then (13) can be obtained since
ǫNC ≤ ǫNC,f + ǫNC,b.

Consider NC with optimal relayYD∗

NC
selected by (6) to

broadcast. Then we have

P

[

2τf Ĩ2 < 3RAB

]

= E

[

P

[

|hD∗

NC
B|

2‖XB − YD∗

NC
‖−α < γ ⋆ d̃f

∣

∣

∣

∣

γ

]]

(a)
·
≤ γ̄ ⋆ (λr νr d̃f ),

where (a) follows that YD∗

NC
is optimal and {hDB} are

independent, and from Lemma 1 in Appendix. Similarly, we
have

P

[

2τbĨ1 < 3RBA

] ·
≤ γ̄ ⋆

(

λr νr d̃b

)

.

Therefore, we can conclude

ǫNC
·
≤ γ̄ ⋆

[

λr νr

(

3m

2min{(1 + µ)τf , (1 + 1/µ)τb}
− 1

)]

.

Next, we are going to look at the DMT of NC using an
optimal relay nodeYD∗

NC
to receive and broadcast.YD∗

NC
is

determined by (7). Likewise, the first step is to calculate
ǫNC,f by (8) with RAB = m

1+µ log(γ), and thus we know
the forward outage probability (16) shown on the top of the

next page. So we haveǫNC,f
·
≤ γ̄ ⋆ (λr νr d̃f ) for large γ̄

and m ∈ (0, 2(1 + µ)τf/3) becauseYD∗

NC
is optimal, and

channel gains are independent so that Lemma 2 in Appendix
can be applied. Similarly, the exponential inequality forǫNC,b is

ǫNC,b
·
≤ γ̄⋆(λr νr d̃b), for largeγ̄ andm ∈ (0, 2(1+1/µ)τb/3),

whered̃b , 3m/2(1 + 1/µ)τb − 1. Thus NC over an optimal
relay node achieves the DMT same as indicated in (14).
The results in Propositions 1 and 2 have been presented in
Fig. 2 for µ = 1. For the case ofτf = τb = 0.5 in
the figure, NC always has a better DMT than TDMH when
relay nodes collaborate to receive and an optimal relay is
selected to broadcast. This is because relay selection diversity
is exploited to broadcast. If all relay nodes broadcast, NC will
loose diversity since it is hard to achieve bidirectional transmit
diversity at the same time for the relays inDAB. NC does not
necessarily have a better DMT than TDMH if{τf , τb} are not
optimally assigned. For example, if the forward and reverse
times between nodeXA andDAB are 0.01, the forward and
reverse times betweenDAB and nodeXB are 0.49 andµ = 1
then TDMH hasτf = τb = (0.01 + 0.49)/(0.5 + 0.5) =
0.5 and its DMT is λr νr (1 − 2m) while NC has τf =

0.01+0.49
(0.01+0.49)+2·0.49 ≈ 0.34 and τb = 1 − 0.34 = 0.66 and its
DMT in (14) becomesd = λr νr (1 − 2.2m). So NC has a
worse DMT than TDMH in this case. Furthermore, the ideal
DMT can be asymptotically approached if network coding can
support information exchange forN source nodes withinN+1
time slots even whenN is very large.

2

3

1

2

 r !r

Fig. 2. Diversity-multiplexing tradeoffs for different transmission protocols
(λr νr > 1, µ = 1). The results of solid lines are the case of optimal time
allocation for NC, i.e.,τf = τb = 0.5. The results of dashed lines are the
case of suboptimal time allocation of NC, i.e.,τf = 0.34 and τb = 0.66.

V. SIMULATION RESULTS

From the above results in Propositions 1 and 2, the DMT
achieved by NC would be worse than that achieved by TDMH
if the time allocation between forward and backward traffic is
suboptimal. Here we simulate the DMT case that the two-way
traffic of the two protocols is respectively through their optimal
relay. We assume that all nodes have the same transmit power
18 dBm, and the channel between any two nodes has path
loss exponent 3.5 and is reciprocal with flat Rayleigh fading.
The distance between source nodes A and B is 60m, and the
random relaying set is a circular area which has a diameter
of 10m and is centered at the middle point between nodes A
and B.

Suppose the node intensityλ = 0.1, traffic pattern parameter
µ = 1, multiplexing gainm = 1/4. Consider the relays in
the random set are not cooperative and an optimal relay is
selected for routing/broadcasting the packets. The simulation
results of outage probability versus average SINR for optimal
and suboptimal time allocation are shown in Figs. 3 and 4,
respectively. We can see the diversity gain of NC is almost the
same as that of TDMH in Fig. 4, while in Fig. 3 the diversity
gain of NC is obviously superior to that of TDMH. Therefore,
from the DMT point of view one can also show that NC may
not be always superior to TDMH when time allocations for
bidirectional traffic are suboptimal and/or bidirectionaltraffic
is asymmetric.

VI. CONCLUDING REMARKS

The DMTs of TDMH and NC in the different scenarios of
relay collaboration have been investigated in this paper. The
information exchange between the two source nodes is over
a random relay set in which the distribution of the relays is
a stationary PPP. The DMT analysis here is based on end-
to-end bidirectional outage so that the DMTs are affected by
traffic pattern, time allocation between bidirectional traffic as
well as the average number of relay nodes in the random
relay set. Our main result proves that NC does not always
have a better DMT than TDMH in the relay collaboration
case because bidirectional transmit diversity is difficultto be
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Ĩ1 <
3RAB

2 τf

]

≤ E

[

P

[

|hAD∗

NC
|2|hD∗

NC
B|

2

2|hAD∗

NC
|2‖XB − YD∗

NC
‖α + |hD∗

NC
B |2‖XA − YD∗

NC
‖α

< γ ⋆
(

d̃f − 1
)

∣

∣

∣

∣

γ

]]

. (16)

5 10 15 20 25 30 35
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Averge SINR (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y ε

 

 

TDMH (λ
r
 ν

r
=1, p=0.436)

NC (λ
r
 ν

r
=1, p=0.436)

TDMH (λ
r
 ν

r
=2, p=0.373)

NC (λ
r
 ν

r
=2, p=0.373)

TDMH (λ
r
 ν

r
=3, p=0.31)

NC (λ
r
 ν

r
=3, p=0.31)

Fig. 3. Outage probabilities of the TDMH and NC protocols without
relay collaboration. An optimal relay node is selected to receive and trans-
mit/broadcast for the two protocols and time allocation forbidirectional traffic
is optimal, i.e.,τf = τb = 0.5.

achieved for both source nodes at the same time. In addition,
the DMT of NC could be worse than that of TDMH as well
due to suboptimal time allocation between the bidirectional
traffic. From the DMT results, we can obtain some insight
of how to do time sharing between the bidirectional traffic to
achieve a better DMT for a given traffic pattern.

APPENDIX

LEMMAS FOR DMT A NALYSIS

Definition 1: A function g(ω) : R++ → R++ is said to

exponentially smaller than or equal tox, i.e., g(ω)
·
≤ ωx,

if limω→∞ log g(ω)/ logω ≤ x. Similar definition can be
applied to the equal sign.

Lemma1: Let Bz ⊆ R
2 be a Borel set andΦ′

z ,

{(Zi, gi) : i ∈ N} be a marked stationary PPP of intensityλz
where{gi} are i.i.d. exponential random variables with unit
mean and variance. The distance between nodeZi and the
origin denotes by‖Zi‖ andθ(ω) : R++ → R++. If θ(ω) → 0
asω → ∞ and θ(ω) is exponentially equal toθ∞, then we
have

P

[

∑

Zk∈Φz

gk ‖Zk‖
−α < θ(ω)

]

·
≤ ω ⋆ (λz νz θ∞), (17)

whereα > 2, Φz = Φ′
z ∩Bz , andνz is the Lebesgue measure

of Bz .
Proof: Without loss of generality, assume that the fi-

nite random sequence{gk ‖Zk‖
−α : Zk ∈ Bz , k ∈ N+}

forms an order statistics, i.e.,{g1 ‖Z1‖−α ≤ g2 ‖Z2‖−α ≤
g3 ‖Z3‖−α · · · ≤ gk ‖Zk‖−α ≤ · · · }. Thus, the event
∑

Zk∈Φz
gk‖Zk‖−α ≤ θ(ω) is equivalent to the intersection
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Fig. 4. Outage probabilities of the TDMH and NC protocols without
relay collaboration. An optimal relay node is selected to receive and trans-
mit/broadcast for the two protocols and time allocation of bidirectional traffic
is suboptimal for NC (τf = 0.34 and τb = 0.66) and optimal for TDMH
(τf = τb = 0.5).

event of g1 ‖Z1‖−α ≤ θ(ω), g1 ‖Z1‖−α + g2 ‖Z2‖−α ≤
θ(ω), · · · ,

∑

Zk∈Φz
gk ‖Zk‖−α ≤ θ(ω). Hence,
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,

where(a) follows from the independence between all random
variables. Since all random variables are exponential, then we
further have

P

[

gk ‖Zk‖
−α ≤ θ(ω)

∣

∣

∣

∣

Φz

]

= 1− exp (−‖Zk‖
αθ(ω))

(b)

≤ ‖Zk‖
αθ(ω), (18)

where (b) follows from the fact thatgk is an exponential
random variable with unit variance ande−y ≥ 1−y, ∀y ∈ R+.
Using (18) and lettingBz be outer bounded by a minimum



disc of radiuss, then we have

P

[
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−α < θ(ω)
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≤ exp
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E
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(c)
=

(

θ(ω) s−α
)

⋆ (λz νz),

where(c) follows from Campbell’s theorem [14]. By Defini-
tion 1 andθ(ω)

.
= ωθ∞ , the result in (17) is readily obtained.

Lemma2: Let T be a given countable finite set with
cardinality |T| andV be a random vector set whose elements
arem-tuples, independent and nonnegative, i.e.,V , {Vi, i ∈
N+ : Vi ∈ R

m
+ ,Vi⊥Vj, i 6= j}. Suppose∀t ∈ T, Vt =

(Vt1 , Vt2 , . . . , Vtm)⊤ ∈ V is an exponential random vector
with m independent entries andω ∈ R++. Supposet∗ ,

argmaxt∈T f(Vt) wheref(Vt) is defined as

f(Vt) ,

∏m
i=1 Vti

∑m
i=1 βi(ω)(Vti )

m
, (19)

where{βi(ω) ∈ R++} are exponentially equal to{βi∞}. If
θ(ω) is exponentially equal toθ∞ andθ(ω) → 0 asω → ∞,
then for sufficient largeω we have

P [f(Vt∗) < θ(ω)]
·
≤ ω|T|(θ∞+mβ+

max), (20)

whereβ+
max , maxi{βi∞ , 0}.

Proof: Since we know all random vectors inV are
independent andt∗ = argmaxt∈T f(Vt), we have

P [f(Vt∗) < θ(ω)] =
∏

t∈T

P [f(Vt) < θ(ω)] . (21)

In addition, for anyt ∈ T it is easy to show that

f(Vt) ≥ φm(ω)
Vtmax

Vtmin

(

Vtmin

Vtmax

)m+1

= φm(ω)Vtmax
Ψtm ,

where φm(ω) , 1/[1 +
∑m

i=1 βi(ω)], Vtmin
, min{Vt},

Vtmax
, max{Vt}, Ψtm , (Vtmin

)m/(Vtmax
)m+1. Thus,

P [f(Vt) < θ(ω)] ≤ P
[

Vtmax
Ψtm < φ−1

m θ(ω)
]

. Also, we
know

P
[

VtiΨtm < φ−1
m θ(ω)

]
(a)

≤

∫

R++

σtiθ(ω)

φm(ω)ψtm

fΨtm
(ψtm) dψtm ,

wherefΨtm
(ψtm) is the probability density function ofΨtm

and (a) follows from exponential random variableVti with
parameterσti ande−x ≥ 1−x, ∀x ∈ R+. So for largeω, we
can obtain

P [f(Vt) < θ(ω)] ≤
m
∏

i=1

σtiθ(ω)

φm
E

[

1

Ψtm

]

≤ Σt[φ
−1
m (ω)]mθ(ω),

whereΣt , (E[1/Ψtm ])m
∏m

i=1 σti . So (21) becomes

P [f(Vt∗) < θ(ω)] ≤ [Σt(φm(ω))−mθ(ω)]|T|.

For largeω, P [f(Vt∗) < θ(ω)]
·
≤ ω|T|(θ∞+mβ+

max).
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