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A Random Dynamical Systems Approach to Filtering in Large-scale
Networks

Soummya Kar, Bruno Sinopoli, and José M. F. Moura

Abstract— The paper studies the problem of filtering a
discrete-time linear system observed by a network of sensors.
The sensors share a common communication medium to the
estimator and transmission is bit and power budgeted. Under
the assumption of conditional Gaussianity of the signal process
at the estimator (which may be ensured by observation packet
acknowledgements), the conditional prediction error covariance
of the optimum mean-squared error filter is shown to evolve
according to a random dynamical system (RDS) on the space
of non-negative definite matrices. Our RDS formalism does not
depend on the particular medium access protocol (randomized)
and, under a minimal distributed observability assumption,
we show that the sequence of random conditional prediction
error covariance matrices converges in distribution to a unique
invariant distribution (independent of the initial filter s tate),
i.e., the conditional error process is shown to be ergodic. Under
broad assumptions on the medium access protocol, we show that
the conditional error covariance sequence satisfies a Markov-
Feller property, leading to an explicit characterization of the
support of its invariant measure. The methodology adopted
in this work is sufficiently general to envision this application
to sample path analysis of more general hybrid or switched
systems, where existing analysis is mostly moment-based.

Index Terms— Networked Control Systems, Sensor Networks,
Random Dynamical Systems, Estimation Error, Weak Conver-
gence, Sensor Schedule.

I. I NTRODUCTION

A. Background and Motivation

Networked Control Systems (NCS) have been proposed
as the paradigm to model, design and analyze control sys-
tems where the effects of computation and communication
on the performance of the closed loop system cannot be
neglected and need to be incorporated in the model. NCS are
amenable to describe large-scale systems where components
may be spatially distributed and demand the services of a
communication network to exchange information. Integration
of communication models traditionally renders the problem
of design and analysis very complex, as the traditional
mathematical machinery employed in control systems in
general is not adequate to include in its framework stochastic
models of communication.

A new approach capable of capturing the complexity of
NCS by being able to extract fundamental limitations and
relevant properties is needed. In [1] we proposed to use the
Random Dynamical Systems [2] framework to characterize
the problem of Kalman filtering where observations may be
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dropped in the communication between the sensors and the
estimator, as in the case where a wireless sensor network is
employed to observe the evolution of a particular dynamical
system. The problem was originally analyzed in [3]. In that
work the authors proved the existence of a critical packet
arrival rate, below which the estimation error covariance,
a stochastic variable dependent upon the realization of the
packet arrival process, would have infinite mean, rendering
the estimate useless.

In this case the optimal estimator would fail to track the
system. The model proposed in [3] has been widely adopted
and extended by several authors [4], [5], [6], [7], [8], [9],
[10]. Although many present extensions to general Markov
chains and account for smart sensors sending local estimates
instead of observations, all the results are established with
respect to mean stability, i.e., boundedness of the mean co-
variance. This metric is unsatisfactory in many applications,
as it does not provide information about the fluctuations of
the error covariance that could grow and be unusable for long
time intervals. We would like to characterize the asymptotic
behavior of its distribution–the goal of this paper. In [1],the
authors showed how RDS can be used to fully characterize
the problem, by providing conditions on the convergence in
distribution of the error covariance to a stationary distribution
whose support can also be explicitly characterized.

In this paper we extend the result of [1] to the case of
many sensors. In particular it is not our goal to evaluate
the performance of the filter with respect to a specific sensor
scheduling policy or communication protocol, but to uncover
the macroscopic properties of such policies and their effect
on the performance of the overall systems. Under fairly
general assumptions on the sensor schedule (which may be
a system design objective or imposed by the random com-
munication medium) and a minimal detectability condition,
we show ergodicity of the conditional error covariance se-
quence and explicitly characterize the support of the resulting
invariant distribution. For clarity we focus on temporally
i.i.d. schedules in this paper, but note how the approach can
be extended to cover more general Markovian scheduling
policies. We believe that this paradigm can be extended to
the verification of properties of stochastic switched or hybrid
systems where nowadays the analysis tends to be moment
based.

We briefly describe the organization of the rest of the
paper. The problem is rigorously formulated in Section II
and a description of the main results of the paper appear in
Section III. Section IV presents the RDS formulation of the
error covariance evolution. Several properties of the resulting
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RDS are presented in Section V, whereas, Section VI pro-
vides outlines for the proofs. Finally, Section VII concludes
the paper.

B. Notation

Denote by:R, the reals;RM , the M -dimensional Eu-
clidean space;T, the integers;T+, the non-negative inte-
gers;N, the natural numbers; andX , a generic space. The
separable Banach space of symmetricM × M matrices is
denoted bySM , equipped with the induced 2-norm. The
subsetSM+ of positive semidefinite matrices is a closed,
convex, solid, normal, minihedral cone inSn, with non-
empty interiorSM++, the set of positive definite matrices.
The coneSM+ induces a partial order inSM , namely, for
X,Y ∈ S

M , we write X � Y , if Y − X ∈ S
M
+ . In case

X � Y and X 6= Y , we write X ≺ Y . We also have a
strong order by virtue of the non-emptiness of the interior
of SM+ , the set of positive definite matricesSM++, where we
write X ≪ Y , if Y −X ∈ SM++.

II. PROBLEM FORMULATION

A. System Model

We consider a discrete-time linear dynamical system being
observed by a network ofN sensors. The signal model is
given by:

x(t+ 1) = Ax(t) +w(t) (1)

wherex(t) ∈ RM is the signal (state) vector with initial
statex(0) being distributed as a zero mean Gaussian vector
with covarianceP0 and the system noise{w(t)} is an
uncorrelated zero mean Gaussian sequence independent of
x(0) with covarianceQ. The observation at then-th sensor
yn(t) ∈ Rmn at time t is of the form:

yn(t) = Cnx(t) + vn(t) (2)

whereCn ∈ Rmn×M and {vn(t)} is an uncorrelated zero
mean Gaussian observation noise sequence with covariance
Pn ≫ 0. Also, the noise sequences at different sensors are
independent of each other, the system noise process and
the initial system state. Because of limited capability of the
sensors, typically the dimension ofyn(t) is much smaller
than that of the signal process and the observation process
at each sensor is not sufficient to make the pair{x(t),yn(t)}
observable. Thus the sensors need to collaborate and to
achieve this, they share a common wireless medium to an
estimator (possibly remote.) Such a medium is bit and power
constrained, the channel access is opportunistic and henceat
every iteration1 only a subset of theN sensors are able to
send their observations to the estimator. We assume there
exists arandomized sensor schedule, where at each timet
only a subset of sensors, randomly chosen, get channel access
and successfully send their observations to the estimator.We
formalize this as follows:

Definition 1 (Sensor Schedule): Let P be the power set
of {1, 2, · · · , n, · · · , N}, i.e., the set of2N of its subsets,

1Iteration refers to the discrete time indexT+.

including the null set. We number the elements ofP as i,
wherei ranges from 0 to2N − 1 and w.l.o.g. assume that 0
corresponds to the null set. A sensor schedule (randomized)
D is a probability distribution on the setP, such that, at time
t, the setI(t) of transmitting sensors is chosen randomly
according to the distributionD fromP. Also, we assume that
the random process{I(t)}t≥0 is an i.i.d. sequence (taking
values in the setP of subsets of{1, · · · , N}),2 i.e., the
set of transmitting sensors at timet is independent of the
assignment at all previous times, leading to a memoryless
channel.

To every scheduleD we assign a probability vectorλD =

[λD
0 , · · · , λ

D
2N−1]

T ∈ [0, 1]2
N

, such that,
∑2N−1

i=0 λD
i = 1 and

P [I(t) = i | I(s), 0 ≤ s < t] = λD
i , ∀t ∈ T+ (3)

The schedule defined above leads to temporally independent
sensor assignments, but allows correlated transmissions at
each timet among the sensors. The model is thus fairly
general, capturing the class of memoryless (temporally)
transmission schemes and subsumes many existing schedul-
ing policies in networked control systems, for example, [3].
The model is not applicable to channels with memory,
however, with the framework developed in this paper we can
cope with a large class of Markovian channels as explained
later. For clarity of presentation, we assume the memoryless
scheduling policyD defined above.

Suppose a particularD is in place. To a generic ele-
ment i of P, we assign the corresponding subsetiS ⊂
{1, 2, · · · , N} indicating the sensors contained ini. We
denoteiS by iS = {i1, · · · , i|iS|}, where |iS| denotes the
cardinality of iS and ij for j = 1, · · · , |iS | denotes thej-th
sensor in the setiS . With this notation in place, for every
i ∈ P, we define

Ci = [CT
i1 , C

T
i2 , · · · , C

T
i|iS |

]T (4)

vi(t) = [vT
i1 (t), · · · ,v

T
i|iS |

(t)]T , ∀t ∈ T+ (5)

and letRi denote the covariance of the zero mean Gaussian
vectorvi(t), which we assume to be positive definite. Then,
at time t, if some non-trivial subset of sensors reports to
the estimator, i.e., ifI(t) 6= φ, the cumulative observation
yI(t)(t) arriving at the estimator is given by

yI(t)(t) = CI(t)x(t) + vI(t)(t) (6)

We assume that, alongside the observation, every sensor
sends an acknowledgement to the estimator whenever it gets
to transmit. Thus the information available to the estimator
at time t is given by

I(t) = {yI(s)(s), I(s), 0 ≤ s < t} (7)

and the objective is to find the minimum mean squared
estimator (mmse), which is the conditional mean

x̂(t|t) = E [x(t) | I(t)] (8)

2Since we identify every element ofP with an unique integeri ∈
{0, · · · , 2N − 1}, for all purposes, we takeI(t) to assume values in
{0, · · · , 2N − 1}.



Conditioned on the information sequence{I(t)}, the signal
process becomes conditionally Gaussian, and the conditional
mean can be recursively updated by a modified (time-
varying) Kalman filter ([11].) It is sufficient to study the
evolution of the one-step predictor

x̂(t|t− 1) = E [x(t) | I(t− 1)] (9)

and the conditional prediction error covariance

P (t) = E[(x(t)− bx(t|t− 1)) (x(t)− bx(t|t− 1))T | I(t− 1)]
(10)

It can be shown that the random sequence{P (t)}t∈T+

evolves according to a random algebraic Riccati equation
(RARE) as:

P (t+1) =

8
>>>><
>>>>:

AP (t)AT +Q if I(t) = 0

AP (t)AT +Q− AP (t)(CI(t))T
“
CI(t)P (CI(t))T

+RI(t)
”−1

CI(t)P (t)AT otherwise
(11)

with initial conditionP (0) = P0. Under the assumption of
memoryless scheduling, the sequence{P (t)} is a Markov
process whose asymptotic properties are of interest to us. To
this end we define the continuous functionsfi : S

M
+ 7−→ SM+

for i = 0, · · · , 2N − 1 by

f0(X) = AXA
T +Q (12)

fi(X) = AXA
T +Q−AX(Ci)T

“
C

i
X(Ci)T +R

i
”−1

C
i
XA

T

(13)
for i = 1, · · · , 2N−1. With the above notation, the evolution
of the RARE sequence{P (t)} can be described by:

P (t+ 1) = fI(t)(P (t)), P (0) = P0 (14)

Since the sequence{fI(t)} comprises of i.i.d. random maps,
the process{P (t)} is Markov. The RARE described above
can be viewed as a generalization of the RARE studied in [1],
where the sequence of prediction error covariance matrices
involved switching between two random functions, one of
which was the Lyapunov update likef0 and the other was
the Riccati update like thefi, i = 1, · · · , 2N − 1 considered
in eqn. (13). Hence, as will be noted later, several technical
results in this paper are direct generalizations of their specific
cases considered in [1].

As is the case with even deterministic single sensor
systems, some form of stabilizability and detectability is
needed to guarantee stability of the filtering error process.
We consider the following notion of weak detectability in a
networked system:

Definition 2 (Weak Detectability): A sensor scheduleD is
called weakly detectableif there existsi 6= 0 in P with
λD
i > 0, such that the pair(Ci, A) is detectable.

It is to be noted that the term ‘weak’ in the above definition
not only indicates that the above is a weak condition on the
sensor network, but also has implications to weak conver-
gence (convergence in distribution) of the sequence{P (t)}
as will be justified later. Note that weak detectability defined
above does not require the pair(Cn, A) to be detectable
for any sensorn, which may be too strong a condition,

especially when the signal process is of large dimension and
the individual sensors have limited observation capabilities.
However, if the network is large, it is fair to assume that a
subset of sensors exists, whose cumulative observations lead
to a detectable system, and with some arbitrarily small but
positive probability all sensors in this subset can transmit
simultaneously. So far the concept of weak detectability, as
stated above, has been an abstract notion and we are yet
to show its effect on the long term behavior of the RARE
sequence.

We also make the following assumption on the signal
process:

Assumption E.1: The pair(A,Q1/2) is stabilizable,A is
unstable andQ ≫ 0.

B. Stability notions and scheduling protocols

In the sequel, when considering the sequence{P (t)}, we
denote the probability and expectation operators byPD,P0 [·]
andED,P0 [·] respectively to emphasize the dependence on
the scheduling policy and the initial condition. Also, the
corresponding sequence of measures induced by the RARE
process onSM+ is denoted by{µD,P0}t∈T+

.
We study the following notions of stability of the RARE

sequence:

Definition 3 (Stochastic boundedness): A scheduling policy
D is said to achieve stochastic boundedness for the RARE
sequence, if for all initial conditionsP0 ∈ SM+ , the sequence
{P (t)} stays stochastically bounded, i.e., for allP0 ∈ SM+

lim
K→∞

sup
t∈T+

P
D,P0 (‖Pt‖ > K) = 0 (15)

Definition 4 (Moment stability)A scheduling policyD is
said to stabilize the RARE sequence in thek-th moment
(1 ≤ k < ∞) if, for all initial conditions P0 ∈ SM+ , the
sequence{P (t)} has bounded moments of orderk, i.e., for
all P0 ∈ SM+

sup
t∈T+

E
D,P0

[
‖Pt‖

k
]
< ∞ (16)

We often abuse terminology to call a scheduling policy
stochastically bounded (s.b.) ork-th moment stable.

The following proposition relates the two stability notions
and establishes the important connection between weak de-
tectability and stability:

Proposition 5 Let the pair(A,Q1/2) be stabilizable andA
unstable. We then have the following:

i Moment stability of any order implies stochastic bound-
edness, i.e., if a scheduling policyD is moment stable
of orderk for some1 ≤ k < ∞, then it is stochastically
bounded.

ii Weak detectability implies stochastic boundedness, i.e.,
a weakly detectable scheduling policyD is s.b.

Proof: The first part is a general property of stochastic
sequences and the proof uses Chebyshev type of inequalities



to relate probability to expectation whose details can be
found in [1]. The proof of the second part is more involved
and lengthy, but an immediate generalization of its specific
case involving a single sensor with intermittent transmissions
is studied in [1],[12] and is omitted.

Remark 6Proposition 5 shows that stochastic boundedness
is weaker than moment stability and whereas weak de-
tectability is sufficient to ensure s.b., stronger detectability
assumptions are required to conclude moment stability. This
is illustrated by an example of a single sensor system
as described below. Our interest in stochastic boundedness
comes from the fact that it is sufficient to ensure ergodicity
of the process{P (t)}, the key point of the paper. The rest of
the paper concerns this important relation between stochastic
boundedness (and hence weak detectability by Proposition 5)
and ergodicity of the RARE sequence, and this is achieved
by using tools from the theory of RDS.

Example: Single sensor system with intermittent trans-
mission
For a single sensor system, a scheduling policy corresponds
to assigning a probabilityγ ∈ [0, 1] of packet transmission.
This is studied in detail in [1],[12]. We assume thatγ > 0
and the pair(A,C1) is observable, which corresponds to the
notion of weak detectability in the general case. In [1],[12]
it was shown thatγ > 0 is a necessary and sufficient
condition for stochastic boundedness ifA is unstable (the
case of invertibleC was shown in [1], whereas [12] proves
the general observable case), whereas mean stability of the
sequence{P (t)} requiresγ to be greater than a critical value
which increases to 1 asA becomes more and more unstable
(see [3] for a lower bound on this critical probability.)
Moreover, in [1] it was shown that stochastic boundedness
(γ > 0) is sufficient to ensure ergodicity of the RARE
process and hence we can establish that the sequence{P (t)}
converges to a unique invariant distribution even if it is not
stable in the mean. In this paper, we take this further and
show that a weakly detectable schedule is sufficient to ensure
ergodicity of{P (t)}, even if it is not moment stable of any
orderk.

III. M AIN RESULTS: INVARIANT DISTRIBUTION

We state the main results of the paper. Proof outlines are
provided in Section VI, the details will appear elsewhere.
Several key technical components of the proofs are direct
generalizations of the development in [1] for the single
sensor case.

The first result concerns the ergodicity of the conditional
error covariance process.

Theorem 7Let AssumptionE.1 hold and the scheduling
policy D be weakly detectable. Then there exists a unique
invariant distributionµD supported on the set of positive
definite matricesSM++, s.t. the RARE sequence{Pt}t∈T+

(or

the sequence
{
µ
D,P0

t

}
t∈T+

of measures) converges weakly

to µD from any initial conditionP0.

The second result explicitly determines the support of the
invariant measureµD.

Theorem 8Let the hypotheses of Theorem 7 hold. Define
the setJ (D) ⊂ P as:

J (D) = {i ∈ P | λD
i > 0 and the pair(Ci, A) is detectable}

(17)
For everyi ∈ J (D) define the set3

Si =
{
fl1 ◦ fl2 ◦ · · · ◦ fls (P

∗
i ) | lr ∈ {0, · · · , 2N − 1},

1 ≤ r ≤ s, s ∈ T+} (18)

where P ∗
i is the unique fixed point of the operatorfi :

SM+ 7−→ SM+ .4 We then have:

i Si = Sj for all i, j ∈ J (D).

ii The invariant measureµD is supported on the closure
of Si, wherei ∈ J (D), i.e.,

supp
(
µD

)
= cl (Si) , i ∈ J (D) (19)

where cl denotes the topological closure of a set on the
spaceSM+ .

Discussions:Theorem 7 establishes the ergodicity of the
prediction error covariance sequence{P (t)} under the as-
sumption that the scheduling policyD is weakly detectable.
The support of the invariant distributionµD is explicitly
characterized in Theorem 8 in terms of the network param-
eters. Note that, in particular, ifD1 andD2 are two weakly
detectable scheduling policies, such that there existsi ∈ P

with λD1

i , λD2

i > 0 and (Ci, A) is detectable, then

supp
(
µD1

)
= supp

(
µD2

)
= cl (Si) (20)

whereSi is defined in eqn. (18). As shown in the single
sensor case ([1]), the invariant distributionsµD are generally
not absolutely continuous w.r.t. the Lebesgue measure and
the supports supp

(
µD

)
are highly fractured subsets ofSM++.

As is noted in the proof of Theorem 7 (Subsection VI-A),
the only requirement is stochastic boundedness of the se-
quence{P (t)} from every initial condition. Weak detectabil-
ity ensures this condition (Proposition 5) and is generally
stronger than the requirement on stochastic boundedness.
Thus, the conclusions of Theorem 7 may stay valid under
even weaker conditions on the scheduleD, provided we
are able to establish stochastic boundedness of{P (t)} from
every initial condition. However, in the absence of weak
detectability, an explicit characterization of the invariant
distribution, as in Theorem 8 may not be possible.

Similarly, we can extend Theorem 7 to stationary tempo-
rally Markovian schedules (i.e., the selection process{I(t)}
is a stationary Markov process rather than i.i.d.). The proof
and conclusions of Theorem 7 will be unchanged, as the RDS
formulation of the error process requires only stationarity
(see [13].) However, with a non i.i.d. selection process

3Below, in definition ofSi, s can take the value 0, implyingP ∗

i ∈ S.
4The stabilizability of(A,Q1/2) and the detectability of(Ci, A) guar-

antee the existence of such aP ∗

i .



{I(t)}, the sequence{P (t)} no longer stays Markov and
hence the assertions of Theorem 8 may not be valid.

IV. RANDOM DYNAMICAL SYSTEM FORMULATION

In this section, we formulate the RARE process as an RDS
evolving onSM+ . An excellent treatment of the theory of RDS
can be found in [14], [13] and the concepts relevant to us
are detailed in [1]. To minimize overlap with [1] and due to
lack of space, we mention RDS facts, as and when required.

We start by defining a random dynamical system (RDS).
We follow the notation in [14], [13].

Definition 9 (RDS)A RDS with (one-sided) timeT+ and
state spaceX is the pair(θ, ϕ):

A) A metric dynamical systemθ = (Ω,F ,P, {θt, t ∈ T})
with two-sided time T, i.e., a probability space
(Ω,F ,P) with a family of transformations{θt : Ω 7−→
Ω}t∈T such that

A.1) θ0 = idΩ, θt ◦ θs = θt+s, ∀t, s ∈ T

A.2) (t, ω) 7−→ θtω is measurable.
A.3) θtP = P ∀t ∈ T, i.e., P (θtB) = P(B) for all
B ∈ F and all t ∈ T.

B) A cocycleϕ overθ of continuous mappings ofX with
time T+, i.e., a measurable mapping

ϕ : T+ ×Ω×X → X , (t, ω,X) 7−→ ϕ(t, ω,X) (21)

B.1) The mappingX 7−→ ϕ(t, ω,X) ≡ ϕ(t, ω)X is
continuous inX ∀ t ∈ T+, ω ∈ Ω.

B.2) The mappingsϕ(t, ω)
.
= ϕ(t, ω, ·) satisfy the

cocycle property: ∀ t, s ∈ T+, ω ∈ Ω,

ϕ(0, ω) = idX , ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω)
(22)

In a RDS, randomness is captured by the space(Ω,F ,P).
Iterates indexed byω indicate pathwise construction. For
example, ifX0 is the deterministic state att = 0, the state
at t ∈ T+ is

Xt(ω) = ϕ (t, ω,X0) (23)

The measurability assumptions guarantee that the stateXt

is a well-defined random variable. Also, the iterates are de-
fined for non-negative (one-sided) time; however, the family
of transformations{θt} is two-sided, which is purely for
technical convenience, as will be seen later.

We now show that the sequence{Pt} generated by the
RARE can be modeled as the sequence of iterates (in the
sense of distributional equivalence) of a suitably defined
RDS.

Fix a scheduleD and define:
(
Ω̃, F̃ , P̃D

)
, whereΩ̃ = P,

F̃ is the power set ofP and the discrete probability measure
P̃D is defined by

P̃
D [{i}] = λD

i , ∀i ∈ P (24)

Also, define the product space,
(
Ω,F ,PD

)
, where Ω =

×t∈TΩ̃ and F and PD are the productσ-algebra and the

product measure5. From the construction, a sample point
ω ∈ Ω is a two-sided sequence taking values in the discrete
setP = {0, · · · , 2N − 1} and, sincePD is the product of
P̃D, the projections are i.i.d. random variables with common
distributionD. Define the family of transformations

{
θRt

}
t∈T

on Ω as the family of left-shifts

θRt ω = ω(t+ ·), ∀t ∈ T (25)

With this, the space
(
Ω,F ,Pγ ,

{
θRt , t ∈ T

})
is the canonical

path space of a two-sided stationary (in fact, i.i.d.) sequence
equipped with the left-shift operator; hence, (e.g., [15])it
satisfies the AssumptionsA.1)-A.3) to be a metric dynamical
system; in fact, it is ergodic.

Recall the functionsfi(X) in eqns. (12,13). Define the
function f̃ : Ω× S

M
+ 7−→ S

M
+ by

f̃(ω,X) = fω(0)(X) (26)

Since the projection map fromω to ω(0) is measurable
(continuous) andfi(X) is jointly measurable ini,X , it
follows that f̃(·) is jointly measurable inω,X . Define the
functionϕR : T+ × Ω× S+ 7−→ S+ by

ϕR(0, ω,X) = X (27)

ϕR(1, ω,X) = f̃(ω,X) (28)

ϕR(t, ω,X) = f̃
(
θRt−1ω, ϕ

R(n− 1, ω,X)
)

(29)

It follows from the measurability of the transformations{
θRt

}
, the measurability off̃(·), and the fact thatT+ is

countable that the functionϕR(t, ω,X) is jointly measurable
in t, ω,X . Finally, ϕR(·) defined above satisfies Assump-
tion B.1) by the continuity of thefis, and AssumptionB.2)
follows by the construction given by eqns. (27-29). Thus,
the pair

(
θR, ϕR

)
is an RDS overSM+ . Given a deterministic

initial condition P0 ∈ SM+ , it follows that the sequence
{Pt}t∈T+

generated by the RARE eqn. (11) is equivalent in
the sense of distribution to the sequence

{
ϕR(t, ω, P0)

}
t∈T+

generated by the iterates of the above constructed RDS, i.e.,

Pt
d
ϕR(t, ω, P0), ∀t ∈ T+ (30)

Thus, investigating the distributional properties of{Pt}t∈T+

is equivalent to analyzing the distributional properties of{
ϕR(t, ω, P0)

}
t∈T+

, which we carry out in the rest of the
paper.

In the sequel, we use the pair(θ, ϕ) to denote a generic
RDS and

(
θR, ϕR

)
for the one constructed above for the

RARE.

V. PROPERTIES OF
(
θR, ϕR

)

A. Facts about generic RDS

We review concepts on RDS (see [14], [13] for details.)
Consider a generic RDS(θ, ϕ) with state spaceX as in
Definition 9. LetX = V+, whereV+ is a closed, convex,
solid, normal, minihedral cone of a real Banach spaceV .
Denote by� the partial order induced byV+ in X and

5Note the difference between the measureP
D and the measuresPD,P0

defined in Subsection II-A.



<< denotes the corresponding strong order. For clarity the
reader may assume in the following thatV = SM , X =
V+ = SM+ and�, << represent the order induced by positive
definiteness in the spaceSM+ . In fact, the RDS

(
θR, ϕR

)

considered in this paper evolves in the coneSM+ of positive
semidefinite matrices, where the partial order is induced by
positive definiteness.

Definition 10 (Order-Preserving RDS): A RDS (θ, ϕ) with
state spaceV+ is order-preserving if ∀t ∈ T+, ω ∈
Ω, X, Y ∈ V+,

X � Y =⇒ ϕ(t, ω,X) � ϕ(t, ω, Y ) (31)

Definition 11 (Sublinearity)An order-preserving RDS
(θ, ϕ) with state spaceV+ is sublinear if for everyX ∈ V+

andλ ∈ (0, 1) we have

λϕ(t, ω,X) � ϕ(t, ω, λX), ∀t > 0, ω ∈ Ω (32)

The RDS is strongly sublinear if in addition to eqn. (32), we
have

λϕ(t, ω,X) ≪ ϕ(t, ω, λX), ∀t > 0, ω ∈ Ω, X ∈ intV+

(33)

Definition 12 (Equilibrium)A random variableu : Ω 7−→
V+ is called an equilibrium (fixed point, stationary solution)
of the RDS(θ, ϕ) if it is invariant underϕ, i.e.,

ϕ (t, ω, u(ω)) = u (θtω) , ∀t ∈ T+, ω ∈ Ω (34)

If eqn. (34) holds∀ω ∈ Ω, except on set ofP measure zero,
u is an almost equilibrium.

Since the transformations{θt} are measure-preserving, i.e.,
θtP = P, ∀t, we have

u (θtω)
d
u(ω), ∀t (35)

By eqn. (34), for an almost equilibriumu, the iterates in the
sequence{ϕ (t, ω, u(ω))}t∈T+

have the same distribution,
which is the distribution ofu.

Definition 13 (Orbit) For a random variableu : Ω 7−→ V+,
we define theforward orbit ηfu(ω) emanating fromu(ω) as
the random set{ϕ (t, ω, u(ω))}t∈T+

. The forward orbit gives
the sequence of iterates of the RDS starting atu.

Although ηfu is the object of interest, for technical con-
venience (as will be seen later), we also define thepull-
back orbit ηbu(ω) emanating fromu as the random set
{ϕ (t, θ−tω, u (θ−tω))}t∈T+

.

We establish asymptotic properties for the pull-back orbit
ηbu. This is because it is more convenient and because
analyzingηbu leads to understanding the asymptotic distri-
butional properties forηfu. In fact, the random sequences
{ϕ (t, ω, u(ω))}t∈T+

and {ϕ (t, θ−tω, u (θ−tω))}t∈T+
are

equivalent in distribution. In other words,

ϕ (t, ω, u(ω))
d
ϕ (t, θ−tω, u (θ−tω)) , ∀t ∈ T+ (36)

This follows fromθtP = P, ∀t ∈ T. Thus, in particular, we
have the following assertion.

Lemma 14Let the sequence{ϕ (t, θ−tω, u (θ−tω))}t∈T+

converge in distribution to a measureµ on V+, where
u : Ω 7−→ V+ is a random variable. Then the sequence
{ϕ (t, ω, u(ω))}t∈T+

also converges in distribution to the
measureµ.

We now introduce some notions of boundedness of RDS,
which will be used in the sequel.

Definition 15 (Boundedness)Let a : Ω 7−→ V+ be a random
variable. The pull-back orbitηba(ω) emanating froma is
bounded onU ∈ F if there exists a random variableC
on U s.t.

‖ϕ (t, θ−tω, a (θ−tω))‖ ≤ C(ω), ∀t ∈ T+, ω ∈ U (37)

Definition 16 (Conditionally Compact RDS)An RDS(θ, ϕ)
in V+ is conditionally compact if for anyU ∈ F and pull-
back orbitηba(ω) that is bounded onU there exists a family
of compact sets{K(ω)}ω∈U s.t.

lim
t→∞

dist(ϕ (t, θ−tω, a (θ−tω)) ,K(ω)) = 0, ω ∈ U (38)

It is to be noted that conditionally compact is a topological
property of the spaceV+. In particular, an RDS in a finite
dimensional spaceV+ is conditionally compact.

We now state a limit set dichotomy result for a class of
sublinear, order-preserving RDS.

Theorem 17 (Corollary 4.3.1. in [13])Let V be a separable
Banach space with a normal solid coneV+. Assume that
(θ, ϕ) is a strongly sublinear conditionally compact order-
preserving RDS over an ergodic metric dynamical systemθ.
Suppose thatϕ(t, ω, 0) ≫ 0 for all t > 0 andω ∈ Ω. Then
precisely one of the following applies:
(a) For anyX ∈ V+ we have

P

(
lim
t→∞

‖ϕ (t, θ−tω,X)‖ = ∞
)
= 1 (39)

(b) There exists a unique almost equilibriumu(ω) ≫ 0
defined on aθ-invariant set6 Ω∗ ∈ F with P (Ω∗) =
1 such that, for any random variablev(ω) possessing
the property0 � v(ω) � αu(ω) for all ω ∈ Ω∗ and
deterministicα > 0, the following holds:

lim
t→∞

ϕ (t, θ−tω, v (θ−tω)) = u(ω), ω ∈ Ω∗ (40)

In this subsection, we establish some properties of the
RDS

(
θR, ϕR

)
modeling the RARE.

Lemma 18The RDS
(
θR, ϕR

)
with state spaceSM+ is order-

preserving. In other words,∀t ∈ T+, ω ∈ Ω, X, Y ∈ SM+ ,

X � Y =⇒ ϕR(t, ω,X) � ϕR(t, ω, Y ) (41)

Also, if Q is positive definite, i.e.,Q ≫ 0, it is strongly
sublinear.

6A setA ∈ F is calledθ-invariant if θtA = A for all t ∈ T.



Proof: The proof uses properties of the functions
f0 (Lyapunov) andfis (Riccati) and is routine given the
arguments in [1] for the single sensor case. We omit it.

VI. T HEOREMS7,8: PROOF OUTLINES

We outline the proofs of Theorems 7,8. The proof of
Theorem 7 relies on the RDS formulation of the RARE, and
we highlight the significant steps in Subsection VI-A, the
left-out details being a generalization of the single-sensor
case in [1] are omitted.

The proof of Theorem 8 rests on establishing the RARE
sequence as a Markov Feller process and expressing the
support of the invariant distribution as the intersection of
the topological lower limits of all possible orbits. Due to
space constraints, we do not provide details in this paper and
rather explain intuitively how it parallels the corresponding
development in [1].

A. Proof of Theorem 7

Lemma 19Consider the RDS
(
θR, ϕR

)
. Let Assump-

tion E.1 hold and the scheduling policyD is such that the
RARE sequence{P (t)} remains stochastically bounded for
every initial conditionP0 ∈ SM+ (by Lemma 5 this condition
is satisfied, in particular, whenD is weakly detectable.)
Then, there exists a unique almost equilibriumuD(ω) ≫ 0
defined on aθR-invariant setΩ∗ ∈ F with PD (Ω∗) = 1
s.t. for any random variablev(ω) possessing the property
0 � v(ω) � αuD(ω)∀ω ∈ Ω∗ and deterministicα > 0, the
following holds:

lim
t→∞

ϕR
(
t, θR−tω, v

(
θR−tω

))
= uγ(ω), ω ∈ Ω∗ (42)

Proof: From Lemma 18,
(
θR, ϕR

)
is strongly sublinear

and order-preserving. It is conditionally compact becausethe
spaceSM+ is finite dimensional. Also, the coneSM+ satisfies
the conditions required in the hypothesis of Theorem 17.
From the properties of the functionsfi, we note fort > 0

ϕR (t, ω, 0) = fω(t−1)

(
ϕR(t− 1, ω, 0)

)
� Q ≫ 0 (43)

Thus the hypotheses of Theorem 17 are satisfied and pre-
cisely one of the assertionsa) or b) holds. We show asser-
tion a) does not hold. Assume thata) holds on the contrary.
Then, there existsP0 ∈ SM+ such that

P
D
(
lim
t→∞

∥∥ϕR
(
t, θR−tω, P0

)∥∥ = ∞
)
= 1 (44)

Then, for everyK ∈ T+, we have

lim
t→∞

∥∥ϕR
(
t, θR−tω, P0

)∥∥ > K, P
γ a.s. (45)

It can be shown then (see [1] for details)

lim
t→∞

P
γ
(∥∥ϕR

(
t, θR−tω, P0

)∥∥ > K
)
= 1 (46)

Since the above holds for everyK ∈ T+, we have

lim
K→∞

sup
t∈T+

P
γ
(∥∥ϕR

(
t, θR−tω, P0

)∥∥ > K
)
= 1 (47)

On the other hand, the stochastic boundedness of the RARE
sequence and Lemma 14 imply

lim
K→∞

sup
t∈T+

P
D
(∥∥ϕR

(
t, θR−tω, P0

)∥∥ > K
)

= lim
K→∞

sup
t∈T+

P
D,P0 (‖Pt‖ > K)

= 0 (48)

This contradicts eqn. (47) anda) does not hold. Thusb)
holds, and we have the result.

Lemma 19 establishes the existence of a unique almost
equilibrium uD if the scheduleD is weakly detectable (or
more generally leads to stochastic boundedness of the RARE
sequence.) From the distributional equivalence of pull-back
and forward orbits, it follows that the transition semigroup
generated by the RARE Markov process is uniquely ergodic,
i.e., the Markov process has a unique invariant probability.
However, to show that the measure induced byuD on
SM+ is attracting,7 eqn. (42) must hold for all initialv.
Lemma 19 establishes convergence for a restricted class of
initial conditionsv. We need the following result to extend
it to general initial conditions, whose proof follows from
properties of the Lyapunov and Riccati operators.

Lemma 20For a scheduleD, let uD be an almost equilib-
rium of the RDS

(
θR, ϕR

)
. Then

P
D
(
ω : uD(ω) � Q

)
= 1 (49)

Proof: [Proof of Theorem 7] We now complete the proof
of Theorem 7. We only highlight the key steps, the details
follow the development in [1]. LetµD be the distribution of
the unique almost equilibrium in Lemma 19. By Lemma 20
we haveµD

(
SM++

)
= 1. Let P0 ∈ SM+ be an arbitrary initial

state. RecallΩ∗ as theθR-invariant set withPγ(Ω∗) = 1 in
Lemma 19 on which the almost equilibriumuD is defined.
By Lemma 20, there existsΩ1 ⊂ Ω∗ with P

D(Ω1) = 1, such
that

uD(ω) � Q, ω ∈ Ω1 (50)

Define the random variablẽX : Ω 7−→ S
M
+ by

{
P0 if ω ∈ Ω1

0 if ω ∈ Ωc
1

(51)

Now chooseα > 0 sufficiently large, such that,P0 � αQ,
which is possible becauseQ ≫ 0. Then it can be shown

0 � X̃(ω) � αuγ(ω), ω ∈ Ω∗ (52)

Then, by Lemma 19, we have

lim
t→∞

ϕR
(
t, θR−tω, X̃

(
θR−tω

))
= uγ(ω), ω ∈ Ω∗ (53)

which implies convergence in distribution, i.e.,

ϕR
(
t, θR−tω, X̃

(
θR−tω

))
=⇒ µγ (54)

as t → ∞. Then by Lemma 14, the sequence

7Attracting here refers to convergence in distribution to the unique
invariant measure from every initial condition.



{
ϕR

(
t, ω, X̃(ω)

)}
t∈T+

also converges weakly to the

unique stationary distributionµγ .
Now, sincePγ(Ω1) = 1, by eqn. (51)

ϕR (t, ω, P0) = ϕR
(
t, ω, X̃(ω)

)
, Pγ a.s., t ∈ T+ (55)

from which we can conclude that

Pt =⇒ µγ (56)

as t → ∞.

B. Proof outline for Theorem 8

The proof is lengthy and will be treated in detail elsewhere.
The general line of arguments follow the corresponding in [1]
for the single sensor case. It can be shown that the Markov
process{P (t)} possesses the weak Feller property, hence
the support of its attracting probability is the intersection of
the topological lower limits of the forward orbits emanating
from all initial conditions (see, for example, [16].) The result
can then be obtained by analyzing the limit properties of
the mapsfis. We refer the interested reader to [1], which
although deals with the single sensor problem, reflects the
key technical arguments necessary for the development.

VII. C ONCLUSIONS

We considered a broad class of estimation problems
arising in networked control systems and established the
ergodicity of the optimal estimation error process under
fairly general conditions. The resulting invariant distribution
is not absolutely continuous w.r.t. the Lebesgue measure in
general, and we explicitly identify the support of its invariant
distribution. We envision the applicability of the techniques
developed in this paper to the pathwise analysis of more
general hybrid or switched systems.
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