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Abstract— The paper studies the problem of filtering a dropped in the communication between the sensors and the
discrete-time linear system observed by a network of senssr  estimator, as in the case where a wireless sensor network is
The sensors share a common communication medium o the ohioved to observe the evolution of a particular dynamical

estimator and transmission is bit and power budgeted. Under t Th bl iqinall vzed in 131, In that
the assumption of conditional Gaussianity of the signal proess SYStém- The problem was originally analyzed in [3]. In tha

at the estimator (which may be ensured by observation packet Wo_rk the authors prov_ed the eXiStenqe of a critical F_)aCket
acknowledgements), the conditional prediction error covdance  arrival rate, below which the estimation error covariance,
of the optimum mean-squared error filter is shown to evolve g stochastic variable dependent upon the realization of the

according to a random dynamical system (RDS) on the space nacket arrival process, would have infinite mean, rendering
of non-negative definite matrices. Our RDS formalism does o .
the estimate useless.

depend on the particular medium access protocol (randomizd) . . . .
and’ under a minimal distributed Obser\/abi"ty assumption In thIS case the Optlmal estimator W0u|d fa.|| to traCk the

we show that the sequence of random conditional prediction system. The model proposed in [3] has been widely adopted
error covariance matrices converges in distribution to a uique  and extended by several authors [4], [5], [6], [7]. [8], [9],
invariant distribution (independent of the initial filter s tate), [10]. Although many present extensions to general Markov
i.e., the conditional error process is shown to be ergodic. hder h ; d tf t dina | | estimat
broad assumptions on the medium access protocol, we show tha C ains and accoun . Or smart sensors sending ocq €s mg €
the conditional error covariance sequence satisfies a Marke  instead of observations, all the results are establishéld wi
Feller property, leading to an explicit characterization d the  respect to mean stability, i.e., boundedness of the mean co-
support of its invariant measure. The methodology adopted variance. This metric is unsatisfactory in many appliaatio
in this work is sufficiently general to envision this applicaion — a5 jt qoes not provide information about the fluctuations of
to sample path analysis of more general hybrid or switched th . that d db ble for |
systems, where existing analysis is mostly moment-based. 8 € e_rror covariance tha cpu growan _e unusable Tor o_ng
time intervals. We would like to characterize the asymptoti
behavior of its distribution—the goal of this paper. In [te
authors showed how RDS can be used to fully characterize
the problem, by providing conditions on the convergence in
distribution of the error covariance to a stationary digttion
whose support can also be explicitly characterized.
A. Background and Motivation In this paper we extend the result of [1] to the case of

Networked Control Systems (NCS) have been proposddiany sensors. In particular it is not our goal to evaluate
as the paradigm to model, design and analyze control Syt&,le performance of the filter with respect to a specific sensor
tems where the effects of computation and communicatigieheduling policy or communication protocol, but to unaove
on the performance of the closed loop system cannot flee macroscopic properties of such policies and their effec
neglected and need to be incorporated in the model. NCS & the performance of the overall systems. Under fairly
amenable to describe large-scale systems where componeiftgeral assumptions on the sensor schedule (which may be
may be spatially distributed and demand the services of@&system design objective or imposed by the random com-
communication network to exchange information. Integrati munication medium) and a minimal detectability condition,
of communication models traditionally renders the problere show ergodicity of the conditional error covariance se-
of design and analysis very complex, as the traditiongluence and explicitly characterize the support of the tiesul
mathematical machinery employed in control systems itvariant distribution. For clarity we focus on temporally
general is not adequate to include in its framework stoahasi-i.d. schedules in this paper, but note how the approach can
models of communication. be extended to cover more general Markovian scheduling

A new approach capable of capturing the complexity opolicies. We believe that this paradigm can be extended to
NCS by being able to extract fundamental limitations anghe Verification of properties of stochastic switched orryb
relevant properties is needed. In [1] we proposed to use tB¥stems where nowadays the analysis tends to be moment
Random Dynamical Systems [2] framework to characterizeased.

the problem of Kalman filtering where observations may be We briefly describe the organization of the rest of the
paper. The problem is rigorously formulated in Section I
The authors are with the Department of Electrical and Comgnpd g description of the main results of the paper appear in
puter Engineering, Carnegie Mellon University, 5000 Ferlfee, Pitts- . . .
burgh, PA 15213.soummyak@andrew.cmu.edu, {brunos, Section lll. Section IV presents the RDS formulation of the
moura}@ece.cmu.edu error covariance evolution. Several properties of theltiesu
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RDS are presented in Section V, whereas, Section VI prancluding the null set. We number the elements)bfasi,
vides outlines for the proofs. Finally, Section VII conchsd wherei ranges from 0 t@" — 1 and w.l.0.g. assume that 0

the paper. corresponds to the null set. A sensor schedule (randomized)
D is a probability distribution on the s&t, such that, at time
B. Notation t, the setZ(¢) of transmitting sensors is chosen randomly

Denote by:R, the reals:RM, the M-dimensional Eu- according to the distributio® from 3. Also, we assume that
clidean spacef, the integers;T, the non-negative inte- the random procesgZ({)},>o is an i.i.d. sequence (taking

) 5
gers; N, the natural numbers; andf, a generic space. The Values in the sefd of subsets of{l,..-,N}),” ie, the
separable Banach space of symmefricx M matrices is set of transmitting sensors at tinteis independent of the
denoted byS™, equipped with the induced 2-norm. The@ssignment at all previous times, leading to a memoryless

subsetSf of positive semidefinite matrices is a cIosed,Channel' ) B

convex, solid, normal, mininedral cone Br', with non- 10 €very schedul® we assign a prOb";‘B'l'Ey vector” =
empty interiorSY, , the set of positive definite matrices. [AG -+ Ajv ;7 €[0,1]*", suchthaty i ;" AP = 1 and
The coneSY induces a partial order i&", namely, for .

X,Y € SM, we write X 2 Y,if Y - X e si. Inycase PZ@) =i |1(s), 0<s<f=A7, VieT, (@)

X 2YandX # Y, we wiite X < Y. We also have a the gchedule defined above leads to temporally independent
strorj&g order by virtue of the non-emptiness of the interiogensor assignments, but allows correlated transmissions a
of SY, the set of positive definite matric€g”,, where we  o0h timet among the sensors. The model is thus fairly

write X <V, if ¥V — X € S, general, capturing the class of memoryless (temporally)
transmission schemes and subsumes many existing schedul-
ing policies in networked control systems, for example, [3]
A. System Model The model is not applicable to channels with memory,
We consider a discrete-time linear dynamical system beirfgpwever, with the framework developed in this paper we can
observed by a network oV sensors. The signal model is cope with a large class of Markovian channels as explained
given by: later. For clarity of presentation, we assume the memasyles
x(t+1) = Ax(t) + w(t) (1) scheduling policyD defined above.
Suppose a particulab is in place. To a generic ele-
ment s of B, we assign the corresponding subsget C

Il. PROBLEM FORMULATION

wherex(t) € RM is the signal (state) vector with initial
statex(0) being distributed as a zero mean Gaussian vectgfr1 2,...,N} indicating the sensors contained in We

with covarianceP, and the system noiseéw(t_)} is an 4o oteis by is = {i1,-- .ij; }. where |is| denotes the
uncorrelated zero mean Gaussian sequence independen, dinality ofig andi, for j _51 ... |is| denotes thej-th
J - 9

x(0) with covana_mce@_. The observation at the-th sensor sensor in the sets. With this notation in place, for every
ya(t) € R™» at timet is of the form: i €, we define

yu(t) = Cpx(t) + vy (t) (2) ci = [T, CF

717 27

7(jiT‘iS‘]T (4)

whereC,, € R™»*M and {v,(t)} is an uncorrelated zero ; . - T
mean Gaussian observation noise sequence with covariance vi(t) = [vi, (1), Viig OF, vteT: ®)

P, > 0. Also, the noise sequences at different sensors agg,j |et g denote the covariance of the zero mean Gaussian
independent of each other, the system noise process afgtioryi(¢), which we assume to be positive definite. Then,
the initial system state. Because of limited capabilityl® t 4t time ¢ if some non-trivial subset of sensors reports to

sensors, typically the dimension of,(t) is much smaller he estimator, i.e., iZ(t) # ¢, the cumulative observation
than that of the signal process and the observation Process(®) (1) arriving at the estimator is given by

at each sensor is not sufficient to make the paitt), y,. ()} . - .
observable. Thus the sensors need to collaborate and to y (t)(t) =C (t)X(t) tv (t)(t) (6)
achieve this, they share a common wireless medium to We

estlrrlatpr (gots;]smhr/] remolte.) SUCh. a medu{lm.lst.blt agdhzowgrends an acknowledgement to the estimator whenever it gets
constrained, the channel access IS opportunistic an NC% transmit. Thus the information available to the estimato
every iteratiod only a subset of theV sensors are able to at time+ is given by

send their observations to the estimator. We assume there
exists arandomized sensor schedulghere at each time I(t) = {y*P(s),Z(s), 0<s<t} (7)
only a subset of sensors, randomly chosen, get channekacces

and successfully send their observations to the estimafor. anq the objective is _to f_|nd the minimum mean squared
formalize this as follows: estimator (mmse), which is the conditional mean

assume that, alongside the observation, every sensor

- X(t[t) = E[x(t) | 3(2)] 8)
Definition 1 (Sensor Schedule)Let 3 be the power set
of {1,2,---,n,---, N}, i.e., the set o2 of its subsets, 2Since we identify every element 68 with an unique integeri €
{0,---,2N — 1}, for all purposes, we tak€(t) to assume values in

Literation refers to the discrete time ind@.. {0,---,2N —1}.



Conditioned on the information sequeng®)}, the signal especially when the signal process is of large dimension and
process becomes conditionally Gaussian, and the conditiothe individual sensors have limited observation capadslit
mean can be recursively updated by a modified (timddowever, if the network is large, it is fair to assume that a
varying) Kalman filter ([11].) It is sufficient to study the subset of sensors exists, whose cumulative observatiads le
evolution of the one-step predictor to a detectable system, and with some arbitrarily small but
positive probability all sensors in this subset can transmi

X(tlt = 1) =E[x(t) | 3(t - 1)] ©) simultaneously. So far the concept of weak detectabilgy, a
and the conditional prediction error covariance stated above, has been an abstract notion and we are yet
P(t) = E[(x(t) — R(t]t — 1)) (x(t) — K(t[t — 1)T | Z(t — 1)] to show its effect on the long term behavior of the RARE
10) Sequence.
It can be shown that the random sequerd@e(t)};cr, We also make the following assumption on the signal
evolves according to a random algebraic Riccati equatigsrocess:
(RARE) as: Assumption E.1 The pair(4, Q'/?) is stabilizable,A is
AP)AT +Q if Z(t) =0 unstable andy > 0.

Pi+1) = AP(t)ATj Q- AP()(CH)T (CI“)P(CIM)T B. Stability notions and scheduling protocols
+Rz(t)) CHUP(HAT  otherwise In the sequel, when considering the sequefieét)}, we
o L (11)  denote the probability and expectation operator@By [ /]
with initial condition P(0) = F,. Under the assumption of 4 mp R ] respectively to emphasize the dependence on

memoryless scheduling, the sequerde(t)} is a Markov . : - i
process whose asymptotic properties are of interest toaus. 1€ Scheduling policy and the initial condition. Also, the

this end we define the continuous functiohs S&’ — s corresponding sequence of measures induced by the RARE

fori=0,---,28 —1 by process orb! is denoted by{pP"0} e, .
T We study the following notions of stability of the RARE
fo(X) = AXA" +Q (12)  sequence:

fi(X) = AXAT Q- AX(C)T (CTX(CY + R Cix AT o _ o
(13) Definition 3 (Stochastic boundedness) scheduling policy
fori =1,---,2N —1. With the above notation, the evolution D is said to achieve stochastic boundedness for the RARE

of the RARE sequenc€P(¢)} can be described by: sequence, if for all init_ial condition$) € S, the sequence
P+ 1) = fou (P, P(0) =P 14) {P(t)} stays stochastically bounded, i.e., for &) € S}/
( HOER ’ lim sup PPFo (| By > K) = 0 (15)
Since the sequendgfz ()} comprises of i.i.d. random maps, K—ooteT,
the procesq P(t)} is Markov. The RARE described above
can be viewed as a generalization of the RARE studied in [1Pefinition 4 (Moment stability)A scheduling policyD is
where the sequence of prediction error covariance matricégid to stabilize the RARE sequence in theh moment
involved switching between two random functions, one ofl < k < oo) if, for all initial conditions Py € S/, the
which was the Lyapunov update likg and the other was Seduence P(¢)} has bounded moments of orderi.e., for
the Riccati update like the;,i = 1,---,2 — 1 considered all Po € SY
in eqn. (13). Hence, as will be noted later, several technica
results in this paper are direct generalizations of thescHj
cases considered in [1].
As is the case with even deterministic single sensdf/e often abuse terminology to call a scheduling policy
systems, some form of stabilizability and detectability istochastically bounded (s.b.) érth moment stable.
needed to guarantee stability of the filtering error process The following proposition relates the two stability notgon
We consider the following notion of weak detectability in a@nd establishes the important connection between weak de-
networked system: tectability and stability:

sup EP7 [|[P|F] < oo (16)
t€T+

Definition 2 (Weak Detectability) A sensor schedul® is ~ Proposition 5 Let the pair(4, Q'/?) be stabilizable andi
called weakly detectabléf there existsi # 0 in 93 with ~ unstable. We then have the following:
AP > 0, such that the pai(C?, A) is detectable. i Moment stability of any order implies stochastic bound-

) ‘ . o edness, i.e., if a scheduling poli@ is moment stable
It is to be noted that the term ‘weak’ in the above definition 4t orderk for somel < k < oo, then it is stochastically

not only indicates that the above is a weak condition on the  5unded.
sensor network, but also has implications to weak conver-ji weak detectability implies stochastic boundedness, i.e

gence (convergence in distribution) of the sequefeét)} a weakly detectable scheduling poligyis s.b.
as will be justified later. Note that weak detectability defin
above does not require the pdi€,,, A) to be detectable Proof: The first part is a general property of stochastic

for any sensom, which may be too strong a condition, sequences and the proof uses Chebyshev type of inequalities



to relate probability to expectation whose details can be The second result explicitly determines the support of the
found in [1]. The proof of the second part is more involvednvariant measurg?.
and lengthy, but an immediate generalization of its specific

case involving a single sensor with intermittent transfoiss  Theorem 8Let the hypotheses of Theorem 7 hold. Define

is studied in [1],[12] and is omitted. B the set7(D) C P as:

Remark 6Proposition 5 shows that stochastic boundedness(P) = {i € ¥ [ A7 > 0and the paifC’, A) is detectablp
is weaker than moment stability and whereas weak de- , _ (17)
tectability is sufficient to ensure s.b., stronger detetitab FOr everyi € J(D) define the sét

assumptions are required to conclude moment stabilitys Th'&_ _ {fz ofi, 00 fi (PF) |1, €40, 2N —1}

is illustrated by an example of a single sensor system
as described bglow. Our in?erest in stoc?hastic bound}(/adness 1<r<s s€Ty}(18)
comes from the fact that it is sufficient to ensure ergodicityhere Py is the unique fixed point of the operatgf :
of the procesg P(t)}, the key point of the paper. The rest ofsi — SM.4 We then have:

the paper concerns this important relation between sttichas i S, =8, foralli,j e J(D).

boundedness (and hence weak detectability by Proposition 5 ’ ! ’

and e_rgodlcny of the RARE sequence, and this is ach|evedii The invariant measurg® is supported on the closure
by using tools from the theory of RDS.

of S;, wherei € J7(D), i.e.,

i)i(gsrropr:e: Single sensor system with intermittent trans- Supp(ﬂp) —d(S), i€ J(D) (19)
For a single sensor system, a scheduling policy corresponds Where cl denotes the topological closure of a set on the
to assigning a probabilit € [0, 1] of packet transmission. spaceS’.

This is studied in detail in [1],[12]. We assume tiat> 0 . . . .

and the pair(4, C, ) is observable, which corresponds to the D|§c1_JSS|ons:Theore_m 7 establishes the ergodicity of the
notion of weak detectability in the general case. In [1][12Prediction error covariance sequengg(t)} under the as-

it was shown thaty > 0 is a necessary and sufficient SUMPtion that the schedul_lng po_hdy_ is yve%kl_y deteqtgble.
condition for stochastic boundednessAfis unstable (the 'N€ Support of the invariant distributiopn™ is explicitly
case of invertible” was shown in [1], whereas [12] provescharactenzed in Theore_m 8 in terms of the network param-
the general observable case), whereas mean stability of RS- Note that, in particular, ¥, andD, are two weakly
sequencd P(t)} requiresy to be greater than a critical value d€tectable scheduling policies, such that there exisisp
which increases to 1 a4 becomes more and more unstablgVith Ai"'; Ai* > 0 and (C*, A) is detectable, then

(see [3] fqr a I(_)wer bound on this critica_ll probability.) supp(uP*) = supp(P?) = cl(S;) (20)
Moreover, in [1] it was shown that stochastic boundedness

(¥ > 0) is sufficient to ensure ergodicity of the RAREWhereS; is defined in eqn. (18). As shown in the single
process and hence we can establish that the seqiétieg ~ sensor case ([1]), the invariant distribution are generally
converges to a unique invariant distribution even if it i¢ nonot absolutely continuous w.r.t. the Lebesgue measure and
stable in the mean. In this paper, we take this further arfié supports supf.”) are highly fractured subsets 8f’, .
show that a weakly detectable schedule is sufficient to ensur As is noted in the proof of Theorem 7 (Subsection VI-A),

ergodicity of { P()}, even if it is not moment stable of any the only requirement is stochastic boundedness of the se-
orderk. quence{ P(t)} from every initial condition. Weak detectabil-

ity ensures this condition (Proposition 5) and is generally
stronger than the requirement on stochastic boundedness.
, i Thus, the conclusions of Theorem 7 may stay valid under
We state the main results of the paper. Proof outlines a[%en weaker conditions on the scheddhe provided we
provided in Section VI, the details will appear elsewhere, o 4pje to establish stochastic boundednessPgt)} from
Several key technical components of the proofs are direghery jnitial condition. However, in the absence of weak
generalizations of the development in [1] for the Singledetectability, an explicit characterization of the inwent
Sensor case. . . distribution, as in Theorem 8 may not be possible.

The first .result concerns the ergodicity of the conditional Similarly, we can extend Theorem 7 to stationary tempo-
€rror covariance process. rally Markovian schedules (i.e., the selection procgs&)}

) . Is a stationary Markov process rather than i.i.d.). The proo

Theorem 7Let AssumptionE.1 hold and the scheduling and conclusions of Theorem 7 will be unchanged, as the RDS

policy D be weakly d%tectable. Then there exists a uniqugyyjation of the error process requires only statiogarit
invariant distributionu® supported on the set of positive (see [13].) However, with a non iid. selection process
definite matrice$?, , s.t. the RARE sequendg’; },cp, (OF

IIl. M AIN RESULTS. INVARIANT DISTRIBUTION

the Sequenc{utp’P"} of measures) converges weakly 3Below, in definition ofS;, s can take the value 0, implying; € S.
o oteTy 4The stabilizability of(4, Q'/2) and the detectability ofC?, A) guar-
to 1P from any initial conditionP. antee the existence of suchit.



{Z(t)}, the sequencd P(t)} no longer stays Markov and product measufe From the construction, a sample point
hence the assertions of Theorem 8 may not be valid. w € Q is a two-sided sequence taking values in the discrete
setP = {0,---,2" — 1} and, sinceP” is the product of
PP, the projections are i.i.d. random variables with common
distributionD. Define the family of transformatiof®;*}, .
In this section, we formulate the RARE process as an RD&n Q) as the family of left-shifts
evolving onS4/. An excellent treatment of the theory of RDS R
can be found in [14], [13] and the concepts relevant to us Ofw=w(t+) vteT (25)
are detailed in [1]. To minimize overlap with [1] and due towith this, the spac«éﬂ,]—", P7, {gﬁ’t c 'JI“}) is the canonical
lack of space, we mention RDS facts, as and when requirgghth space of a two-sided stationary (in fact, i.i.d.) segee
We start by defining a random dynamical system (RDSkquipped with the left-shift operator; hence, (e.g., [15])
We follow the notation in [14], [13]. satisfies the Assumptios 1)-A.3) to be a metric dynamical
system; in fact, it is ergodic.
Definition 9 (RDS)A RDS with (one-sided) timeT, and Recall the functionsf;(X) in eqns. (12,13). Define the
state spacet is the pair(6, ¢): function f : @ x S8} — S1' by
A) A metric dynamical syste = (Q, F,P,{6;,t € T}) Flw, X) = Fu0)(X) (26)
with two-sided time T, i.e., a probability space

(€, F,P) with a family of transformationgd, : O —  Since the projection map frony to w(0) is measurable
Q},er such that (continuous) andf;(X) is jointly measurable ini, X, it

A1) 6y —ida, 6; 00, = Orss, Vs €T ;oIIO\;ys th%t f’](r) is g(z)intlgy measSuraEIe inu, X. Define the
A.2) (t,w) — Oyw is measurable. UNCHON = Ly X 22 X5y =7 5y DY

IV. RANDOM DYNAMICAL SYSTEM FORMULATION

A3) 6P =PVt € T, i.e, P(6;B) = P(B) for all 0,0, X) = X (27)
o A B e ]'; and a||t9€ ;I[' . - i (pR(17w7X) _ JE(W’X) (28)
) A cocycley overd of continuous mappings ot wi PRtw X) = F(OF w of(n—1,wX)) (29)

time T, , i.e., a measurable mapping

It follows from the measurability of the transformations
p: T x QXX 5 X, (tw, X) — o(t,w, X) (21) {6F}, the measurability off(-), and the fact thafl; is
B.1) The mappingX — o(t,w, X) = ¢(t,w)X is countable that the functiop? (¢, w, X) is jointly measurable

continuous inX Vt € T, w € Q. in t,w, X. Finally, ©f(-) defined above satisfies Assump-
B.2) The mappingsp(t,w) = o(t,w,-) satisfy the tion B.1) by the continuity of thef;s, and Assumptioi8.2)
cocycle property: V¢, s € Ty, w € Q, follows by the construction given by eqns. (27-29). Thus,

the pair(9%, ¢*) is an RDS oveB%!. Given a deterministic
p(0,w) =idx, @(t+s,w)=p(t0w)op(s,w) initial condition P, € SV, it follows that the sequence
(22) {P:},c1, generated by the RARE eqn. (11) is equivalent in
the sense of distribution to the sequefge’ (¢, w, PO)}t6T+

In a RDS, randomness is captured by the spazer, ). generated by the iterates of the above constructed RDS, i.e.

Iterates indexed byw indicate pathwise construction. For
example, if X, is the deterministic state at= 0, the state P, < o (t,w, Py), Vt € Ty (30)

atte Ty is
Xi(w) = ¢ (t,w, Xo) (23) Thus, investigating the distributional properties{d? }, .,

- _ is equivalent to analyzing the distributional propertids o
The measurability assumptions guarantee that the sSfate {pB(t,w, Py which we carry out in the rest of the

is a well-defined random variable. Also, the iterates are depper.

fined for non-negative (one-sided) time; however, the famil | the sequel, we use the pdit, ¢) to denote a generic

of transformations{6,} is two-sided, which is purely for rpg and (6%, o) for the one constructed above for the
technical convenience, as will be seen later. RARE.

We now show that the sequené®.} generated by the
RARE can be modeled as the sequence of iterates (in the
sense of distributional equivalence) of a suitably defined
RDS. A. Facts about generic RDS

Fix a schedule® and define:(ﬁ,f, I@D), whereQ) = 9, We review concepts on RDS (see [14], [13] for details.)

F is the power set ot and the discrete probability measureConsider a generic RD), ) with state spacet’ as in

)}teﬂu’

V. PROPERTIES OF(6%, o)

PP is defined by De_finition 9. Let X =V, whereV, is a closed, convex,
0 n solid, normal, minihedral cone of a real Banach sp&te
PPHi = A7, Viep (24) Denote by=< the partial order induced by, in X and

; D _
AlSO’NdEfme the product spacéﬂ, £ P )’ where O = 5Note the difference between the measBfe and the measureB?:Fo
xter2 and F and PP are the product-algebra and the defined in Subsection II-A.



<< denotes the corresponding strong order. For clarity thEhis follows from6,P = P, ¥t € T. Thus, in particular, we

reader may assume in the following thet = S™, X = have the following assertion.

Vy =S¥ and=<, << represent the order induced by positive

definiteness in the spac®’. In fact, the RDS(6",o%) Lemma 14Let the sequence{y (t,0_w,u (60— w))},cr,

considered in this paper evolves in the c&{é of positive converge in distribution to a measuge on V,, where

semidefinite matrices, where the partial order is induced by : Q@ — V., is a random variable. Then the sequence

positive definiteness. {¢ (t,w,u(w))},er, also converges in distribution to the
measureu.

Definition 10 (Order-Preserving RDS)A RDS (0, ¢) with
state spacel, is order-preserving if Vi € T,, w €
Q, X, YeV,,

XY = ot,w, X) = p(t,w,Y) (31) Definition 15 (Boundednessk?eta =V be a randgm
variable. The pull-back orbit?(w) emanating froma is
bounded onU € F if there exists a random variable
onU s.t.

We now introduce some notions of boundedness of RDS,
which will be used in the sequel.

Definition 11 (Sublinearity)An  order-preserving RDS
(0, p) with state spacé’, is sublinear if for everyX € V,
and) € (0,1) we have lo (¢, 01w, a (f_tw))|| < C(w), Vi€ T4, we U (37)

Ap(tw, X) 2 p(tw, AX), ¥ >0, we - (32) Definition 16 (Conditionally Compact RDAn RDS (4, ¢)
The RDS is strongly sublinear if in addition to eqn. (32), weén V, is conditionally compact if for any/ € F and pull-
have back orbitn® (w) that is bounded o/ there exists a family

of compact set§ K (w)},cv S.t.
Ao(t,w, X) < p(t,w,AX), Vt >0, we Q, X €intV, P K (@)}weu

(33) tlggo dist(p (t,0_iw,a (0_w)) , K(w)) =0, w e U (38)

It is to be noted that conditionally compact is a topological
property of the spac®.. . In particular, an RDS in a finite
dimensional spac® is conditionally compact.

We now state a limit set dichotomy result for a class of
¢ (tyw,u(w)) =u(Bw), Vt € T4, w € (34) sublinear, order-preserving RDS.

Definition 12 (Equilibrium)A random variableu : Q —
V. is called an equilibrium (fixed point, stationary solution)
of the RDS(6, ¢) if it is invariant undery, i.e.,

If eqn. (34) holdsyw € ©, except on set of measure zero, Thegrem 17 (Corollary 4.3.1. in [13]Let V be a separable
u is an almost equilibrium. Banach space with a normal solid cofe. Assume that
(0, ) is a strongly sublinear conditionally compact order-
'preserving RDS over an ergodic metric dynamical sysfem
Suppose thap(t,w,0) > 0 for all ¢ > 0 andw € Q. Then

u (Byw) 4 u(w), Vi (35) precisely one of the following applies:

A . . a) For anyX € V, we have
By eqn. (34), for an almost equilibrium, the iterates in the @ y *

sequence{y (t,w, u(w))},cp, have the same distribution, ]P(lim llo (t,0_w, X)|| = oo) =1 (39)
which is the distribution of. e

Since the transformation®;} are measure-preserving, i.e.
0P = P, V¢, we have

(b) There exists a unique almost equilibriuafw) > 0
defined on af-invariant set Q* € F with P (Q*) =
1 such that, for any random variabléw) possessing
the property0 < v(w) < au(w) for all w € Q* and
deterministica. > 0, the following holds:

Definition 13 (Orbit) For a random variable : Q — V,
we define theforward orbit »/ (w) emanating fromu(w) as
the random sefy (¢, w, u(w))},cp, - The forward orbit gives
the sequence of iterates of the RDS starting.at
Although n/ is the object of interest, for technical con- lim o (¢,0_w,v (f_w)) = u(w), w € O (40)
venience (as will be seen later), we also define plod- t=oo
back orbit n°(w) emanating fromu as the random set In this subsection, we establish some properties of the
{o (t,0-1w,u (0-w))} et - RDS (67, ¢™) modeling the RARE.

We establish asymptotic properties for the pull-back orbitemma 18The RDS(eR, @R) with state spacg! is order-
nY. This is because it is more convenient and becauggeserving. In other wordsyt € T, w € Q, X,Y € S¥,
analyzingn? leads to understanding the asymptotic distri- R R
butional properties fom . In fact, the random sequences X2Y = ¢"(tw X) 29 (twY) (41)

{w(?awau(@)};em qnd {o (tvoftwvu(oftw))}te'ﬂur are  Also, if ) is positive definite, i.e.Q > 0, it is strongly
equivalent in distribution. In other words, sublinear.

d
¢ (tw,u(w))=p(t,0_w,u(@_w)), Vte T+  (36) A set A € F is called¢-invariant if 9, A = A for all ¢ € T.



Proof: The proof uses properties of the functionsOn the other hand, the stochastic boundedness of the RARE
fo (Lyapunov) andf;s (Riccati) and is routine given the sequence and Lemma 14 imply
arguments in [1] for the single sensor case. We omit it
9 [1] 9 lim sup PP (H(pR (t,@ftw,Po)H > K)

K—><>ot€'[r+
VI. THEOREMS7,8: PROOF OUTLINES = Jlim sup PP (| B > K)
O teT4
We outline the proofs of Theorems 7,8. The proof of =0 (48)

Theorem 7 relies on the RDS formulation of the RARE, and., . .
we highlight the significant steps in Subsection VI-A, thgg;gscgr:(;axgtﬁaig%((34233;?) does not hold. Thu:b.)

lcea]:ts'gl#] ([jle]tz;rlz gfnlirt]?eda generalization of the single-sens Lemma 19 establishes the existence of a unique almost
) quilibrium »P if the scheduleD is weakly detectable (or

The proof of Tlr\1/|eorkem ﬁ r”ests on estabhsc:ung the RAR ore generally leads to stochastic boundedness of the RARE
sequence as a Markov Fefier process and expressing tg]eequence.) From the distributional equivalence of putikba
support of the invariant distribution as the intersectidn o

) I . ) and forward orbits, it follows that the transition semigpou
the topological lower limits of all possible orbits. Due to goo

. . L ted by the RARE Mark i iquel dic,
space constraints, we do not provide details in this paper aﬁenera ea by the arkov process Is Uniquely Srgocic

L . . .e., the Markov process has a unique invariant probability
rather explain intuitively how it parallels the corresporgl However, to show that the measure induced 4% on
development in [1]. :

S is attracting’ eqn. (42) must hold for all initiak.
Lemma 19 establishes convergence for a restricted class of
initial conditionsv. We need the following result to extend

it to general initial conditions, whose proof follows from
Lemma 19Consider the RDS (6%, ¢). Let Assump- properties of the Lyapunov and Riccati operators.

tion E.1 hold and the scheduling polic® is such that the
RARE sequencé P(t)} remains stochastically bounded for
every initial conditionP, € S}’ (by Lemma 5 this condition
is satisfied, in particular, whe® is weakly detectable.)

A. Proof of Theorem 7

Lemma 20For a scheduléD, let «P be an almost equilib-
rium of the RDS(6%, o%). Then

Then, there exists a unique almost equilibriuf(w) > 0 PP (w:uP(w) = Q) =1 (49)
defined on adf-invariant setQ* € F with PP (Q*) = 1

s.t. for any random variable(w) possessing the property Proof: [Proof of Theorem 7] We now complete the proof
0 < v(w) =X auP(w)Vw € O and deterministiex > 0, the of Theorem 7. We only highlight the key steps, the details
following holds: follow the development in [1]. Lex” be the distribution of

the unique almost equilibrium in Lemma 19. By Lemma 20
we haven” (S, ) = 1. Let Py € SY be an arbitrary initial
state. Recall2* as thed’-invariant set withP7(Q*) = 1 in
Proof: From Lemma 18(6%, ™) is strongly sublinear |emma 19 on which the almost equilibriun? is defined.

and order-preserving. It is conditionally compact becabise By Lemma 20, there exist8; ¢ Q* with PP(Q;) = 1, such
spaceSY is finite dimensional. Also, the cor#}! satisfies that

the conditions required in the hypothesis of Theorem 17. uP(w) = Q, we (50)
From the properties of the functiorfs, we note fort > 0

(PR (t,w,0) = fw(tfl) ((PR(t - Lw, 0)) Q>0 (43

Thus the hypotheses of Theorem 17 are satisfied and pre-
cisely one of the assertiors or b) holds. We show asser-
tion a) does not hold. Assume tha) holds on the contrary.
Then, there exist$}, € S}’ such that

tlggo oF (t, 0F w, v (GZM)) =u'(w), we QF (42)

Define the random variabl® : Q — S} by

P fwe
0 ifweQf

Now choosex > 0 sufficiently large, such that?y < a@,
which is possible becausg > 0. Then it can be shown

0= X(w) =< au(w), weQ* (52)

(51)

PP (hm H(pR (t,@ftw,Po)H = oo) =1 (44)
troo Then, by Lemma 19, we have
il y il

Then, for everyK € T, we have

_ lim of (¢, 6% 0w, X (87 =7 O* (53
Jlim ™ (¢, 05w, P)|| > K, P7as. (45) o0 ¥ ( —t (‘tw)) wiw), w e (53)

_ which implies convergence in distribution, i.e.,
It can be shown then (see [1] for details)

lim P7 (|| (,0%w, P)|| > K) =1 (46)

t—o00

Since the above holds for evefy € T, we have

o (t, 08w, X (9§tw)) — 7 (54)

ast — oo. Then by Lemma 14, the sequence

lim sup PV(HQOR (t79§tw7P0)H > K) =1 (47) "Attracting here refers to convergence in distribution te thnique
K—004eT, invariant measure from every initial condition.



{@R (t,w,)?(w)) }tET also converges weakly to the [g]
+

unigue stationary distributiop”.

Now, sinceP7(2;) = 1, by eqgn. (51) [0l

o (t,w, Py) = o (t,w,)?(w)) ,PTa.s., t €T, (55)

from which we can conclude that [0l
_ 11
P = (56)
[12]

ast — oo. | |
[13]

B. Proof outline for Theorem 8

14
The proof is lengthy and will be treated in detail elsewhere[. ]

The general line of arguments follow the corresponding]n [1
for the single sensor case. It can be shown that the Marké!
process{P(t)} possesses the weak Feller property, henggg)
the support of its attracting probability is the intersentof

the topological lower limits of the forward orbits emanatin
from all initial conditions (see, for example, [16].) Thestdt

can then be obtained by analyzing the limit properties of
the mapsf;s. We refer the interested reader to [1], which
although deals with the single sensor problem, reflects the
key technical arguments necessary for the development.

VII. CONCLUSIONS

We considered a broad class of estimation problems
arising in networked control systems and established the
ergodicity of the optimal estimation error process under
fairly general conditions. The resulting invariant distriion
is not absolutely continuous w.r.t. the Lebesgue measure in
general, and we explicitly identify the support of its inzant
distribution. We envision the applicability of the technés
developed in this paper to the pathwise analysis of more
general hybrid or switched systems.
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