arXiv:1005.4853v2 [cs.IT] 2 Jun 2010

Analog Matching of Colored Sources to

Colored Channels

Yuval Kochman and Ram Zamir

Dept. Electrical Engineering - Systems, Tel Aviv Univeysit

Abstract

Analog (uncoded) transmission provides a simple and rodelgtme for communicating a Gaussian
source over a Gaussian channel under the mean squaredMB8E) @istortion measure. Unfortunately,
its performance is usually inferior to the all-digital, segtion-based source-channel coding solution,
which requires exact knowledge of the channel at the encdtherloss comes from the fact that except
for very special cases, e.g. white source and channel ofhimgtbandwidth (BW), it is impossible to
achieve perfect matching of source to channel and channsbdoce by linear means. We show that
by combining prediction and modulo-lattice operationsisitpossible to match any colored Gaussian
source to any colored Gaussian noise channel (of possilffigretit BW), hence achieve Shannon’s
optimum attainable performand® D) = C'. Furthermore, when the source and channel BWs are equal
(but otherwise their spectra are arbitrary), this schemasigmptotically robust in the sense that for
high signal-to-noise ratio a single encoder (independénhe noise variance) achieves the optimum
performance. The derivation is based upon a recent modttiod modulation scheme for transmitting

a Wyner-Ziv source over a dirty-paper channel.
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. INTRODUCTION

Digital transmission of analog sources relies, at leaghfeotheoretical point of view, on Shannon’s
source-channel separation principle. Being both optimdleasy to implement, digital techniques replace
today traditional analog communication even in areas likeastelephony, radio and television. This trend
ignores, however, the fact that the separation principlesdwot hold for communication networks, and
in particular for broadcast channels and compound chaf@glf37], [29]. Indeed, due to both practical
and theoretical reasonfgint source-channel coding and hybrid digital-analog schemescanstantly
receiving attention of researchers in the academia andnthesiry.

In this work we consider transmission under the mean-squarsor (MSE) distortion criterion, of
a general stationary Gaussian source over a power-cansdrainannel with inter-symbol interference
(IS, i.e. the transmitted signal is passed through someali filter, and additive white Gaussian noise
(AWGN).

Shannon’s joint source-channel coding theorem implies the optimal (i.e., minimum distortion)
performanceD" is given by

R (D"pt) =C, 1)

where R(D) is the rate-distortion function of the source at MSE distortD, andC' = C(P) is the
channel capacity at power-constraift both given by the well-known water-filling solutions| [6].yB
Shannon'’s separation principle] (1) can be achieved by tersysonsisting of source and channel coding
schemes. This system usually requires large delay and eangiital codes. An additional serious
drawback of the all-digital system is that it suffers fromtaréshold effect”: if the channel noise turns
out to be higher than expected, then the reconstructionswifer from very large distortion, while if the
channel has lower noise than expected, then there is no waprent in the distortion [37][29]|]2].

In contrast, analog communication techniques (like amgétor frequency modulation![5]) are not
sensitive to exact channel knowledge at the transmittereb\@r, in spite of their low complexity and
delay, they are sometimes optimal: if we are allowed one ichlnse per source sample, and the source
and noise are white (i.e. have i.i.d. samples), then a “sHgter” coding scheme achieves the optimum
performance of.{1), see e.g. |11]. In this scheme, the tritemtonsists of multiplication by a constant

factor that adjusts the source to the power constrBinso it is independent of the channel parameters.

LIt turns out, that for the purpose of analysis it is more coimet to use a colored-noise channel model rather than an ISI
one; this is deferred to Sectifq II.



Only the receiver needs to know the power of the noise in ctdaptimally estimate the source from
the noisy channel output (by multiplying by the “Wiener dasént”).

For the case otolored sources and channels, however, such a simple solution igvaitable, as
single-letter codes are only optimal in very special scesdd(]. A particular case is when the channel
bandwidth is not equal to the source bandwidth, but othertyisy are white (i.e., a white source is sent
through an AWGN channel with some average number of charsed per source sample). As it turns
out, even if we consider more general linear transmissiterses, [1], still[(IL) is not achievable in the
general colored case. How far do we need to deviate from Gafigransmission in order to achieve
optimal performance in the colored case? More importacty, we still achieve full robustness?

In this work we propose and investigatesami-analogtransmission scheme. This scheme achieves
the optimum performance dfl(1) f@any colored source and channel pair without explicit digitatliog,
hence we call it theAnalog Matching(AM) scheme. Furthermore, for the matching bandwidth case
(Bc = Bg, but arbitrary source and channel spectra), we show thaf\tlzddog Matching transmitter is
asymptotically robusin the high signal-to-noise ratio (SNR) regime, in the sehsgit becomes invariant
to the variance of the channel noise. Thus, in this regime peerfect SNR-invariant matching property
of white sources and channels [11] generalizes to the d8jaktolored case.

Previous work on joint source/channel coding for the BWsasch/colored setting mostly consists
of hybrid digital analog (HDA) solutions, which involve #ihg the source or channel into frequency
bands, or using a superposition of encoders (see [25], [28], [22], [19] and references therein),
mostly for the cases of bandwidth expansi@x(> Bs) and bandwidth compressioB¢ < Bg) with
white spectra. Most of these solutions, explicitly or inafily, allocate different power and bandwidth
resources to analog and digital source representations,thiey still employ fulldigital coding Other
works [2], [30] treat bandwidth expansion by mapping eactre® sample to a sequence of channel
inputs independently; by the scalar nature of these mappthgy do not aim at optimal performance.

In contrast to HDA solutions, the AM scheme treats the sowncé channel in théime domain
using linearprediction thus it also has the potential of shorter delay. Furtheemitrdoes not involve
any guantization of the source or digital channel code, bthter it appliesmodulo-lattice arithmetid¢o
analog signals. This modulation allows to take advantagsd® information - here based on prediction
- while keeping the analog nature of transmission.

Table[] demonstrates the place of the Analog Matching scheitién information-theoretic time-
domain schemes. For the separate colored Gaussian sodrchamel problems, digital coding schemes,

based upon the combination of prediction and memorylesslzmuks, are optimal: differential pulse code
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Problem H Conventional predictior{ Side-information based solutio}w

Source coding DPCM compression W?Z video coding
Channel coding FFE-DFE receiver Dirty-paper coding = precoding
Joint source-channel codinH; Does not exist Analog matching

Table I: Information-Theoretic time-domain solutions wared Gaussian source and channel problems.

modulation (DPCM) in source coding (see [13] for basic prips and[[35] for optimality), and feed-
forward-equalizer / decision-feedback-equalizer (FHEEDreceiver in channel coding (see [3)).

The optimality of DPCM hinges on prediction being performesihg the reconstruction rather than the
source itseIiH Identical predictors, with equal outputs, are employedh@tincoder and at the decoder. An
alternative approach, advocated for low-complexity etrogpds “Wyner-Ziv video coding” (see e.d. [23]).
In this approach, prediction is performed at the decodey anHl is treated as decoder side-information
[32]. In the context of the AM scheme, however, decoder-grlgdiction is not an option but a must:
since no quantization is used, but rather the reconstrueticor is generated by the channel, the encoder
does not have access to the error and the side-informatiproagh must be taken.

In the channel counterpart, the FFE-DFE receiver cancelefiect of past channel inputs by filtering
past decoder decisions (assumed to be equal to these inputsyder to avoid error propagation,
sometimes precoding [27], where the filter is moved to theodar is preferred; this can be seen as a
form of dirty-paper coding4] , where the filter output plays the role of encoder sidiesimation. Again,
the AM scheme must use the “encoder side-information” warid no channel code is used, then the
decoder cannot make digital decisions regarding past @hamputs, so virtually it has no access to these
inputs.

To summarize, the AM scheme uses source prediction at theddecand channel prediction at the
encoder, and then treats the predictor outputs as Wynessdtivdirty-paper side-information, respectively;
see Figurd]1. Digital solutions to these side-informatioobems rely on binning, which may also be

materialized in a structured (lattice) way [36]. AM treakese two side-information problems jointly

%In the high-rate limit it is easy to see the role of predictithte rate-distortion function amounts to that of the whiterse
innovations process, while the channel capacity is thetizddivhite Gaussian noise channel capacity with the noipéaced
by its innovations process only. We stick to this limit in inéroduction; for general rates, see Secfidn Il.

3Extracting the innovations of the un-quantized source isetines called “DPCM” and is known to be strictly inferior to
DPCM; seel[183],[35].
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Figure 1: Workings of the AM scheme in the high-SNR limit. Tésurce is assumed to have an auto-

regressive (AR) model. mod A is the modulo-lattice operation.

usingmodulo-lattice modulatiodfMLM) , an approach proposed recently for joint Wyner-Zivdadhirty-
paper coding([15]. However, combining these pieces turistamie a non-trivial task. The interaction
of filters with high-dimensional lattice codes raises tecahdifficulties which are solved in the sequel.
The rest of the paper is organized as follows: We start ini@&@fi by bringing preliminaries regarding
sources and channels with memory, as well as modulo-latimdulation and side-information problems.
In Section[Ill we prove the optimality of the Analog Matchisgheme. In Section IV we analyze the
scheme performance for unknown SNR, and prove its asyroptatiustness. Finally, Secti@d V discusses

applications of AM, and is advantage relative to other apphes (e.g. HDA) in terms of delay.

[I. FORMULATION AND PRELIMINARIES

In SectionIl-A we formally present the problem. In the reéttlee section we bring preliminaries
necessary for the rest of the paper. In Sections 11-B1o] [I-® present results connecting the Gaussian-
guadratic rate-distortion function (RDF) and the Gausslzannel capacity to prediction, mostly following
[35]. In sectiond TI-E and I[-F we discuss lattices and thegiplication to joint source/channel coding

with side information, mostly following [15].

A. Problem Formulation

Figure[2 demonstrates the setting we consider in this pder.sourceS,, is zero-mean stationary

Gaussian, with spectrurs(e/27/). As for the channel, for the purpose of the analysis to folloes
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Figure 2: Colored Gaussian joint source/channel setting.

break away with the ISI model discussed in the introductaon use a colored noise mmﬁl:

where X,, andY;, are the channel input and outpu, is zero-mean additive stationary Gaussian noise
with spectrumSyz(e/27/), assumed to be finite for all|f| < Bc and infinite otherwise. The channel
input X,, needs to satisfy the power constraWir{X, } < P, and the distortion of the reconstruction

S, is given by D = Var{S, — S,.}.

B. Spectral Decomposition and Prediction

Let A, be a zero-mean discrete-time stationary process, with pepectrumsS 4 (e/27/). The Paley-

Wiener condition is given by _[28]:

<oo 3)

/ log (Sa(e>) ) df

where here and in the sequel logarithms are taken to theahd@ase. It holds for example if the spectrum
Sa(e?"1) is bounded away from zero. Whenever the Paley-Wiener donditolds, the spectrum has a

spectral decomposition:

P, (SA> , 4)

Z*

Sa(e?) = Q()Q" (—)

z=j2nf
whereQ(z) is a monic causal filter, and the entropy-power(S,4) of the spectrum is defined by:

P.(S4) £ Po(Sa(e)) = exp / log (Sa(e*))df . (5)

2

The optimal predictorof the process,, from its infinite past is
P(z)=1-Q7'(2) , (6)

“The transition between the two models is straightforwaidgis suitable front-end filter at the receiver (providedi thnee

IS filter is invertible).



a filter with an impulse response satisfyipg = 0 for all n < 0. The prediction mean squared error

(MSE) is equal to the entropy power of the process:
Var{A,|A" !} = P.(S4) . 7

The prediction error process can serve as a white innovafioycess for AR representation of the process.

We define theprediction gainof a spectrumsS 4 (e/2™/) as:

| J2 Sa@® Ndf varea
A 2r f A 2 _ ar{ n}
P8 S1(Sa(*) & = — = Ay 2 ®)

where the gain equals one if and only if the spectrum is whie fixed over all frequenciels| < % A

case of special interest, is where the process is bancetinsitich thatS(e/2™/) = 0 V|f| > £ where

B < 1. In that case, the Paley-Wiener conditidh (3) does not holtitae prediction gain is infinite. We
re-define, then, the prediction gain of a process banddifrtib B as the gain of the process downsampled
by £, i.e.,

s B J2 Sale s o
- exp [% f_gg log<SA(ej2”f)>df} .

We will use in the sequel prediction from a noisy version ofracess: Suppose that, = A,, + W,

with 1,, additive white with powep. Then it can be shown that the noisy prediction error hasaaas
(see e.qg.[I35]):
Var{4,|C" 1} = P.(Sa+6)—0 . (10)

Note that for any) > 0, the spectruns 4 (¢/2™/)+6 obeys[(B), so that the conditional variance is non-zero

even if A,, is band-limited. In the case = 0, (10) collapses td_{7).

C. Water-Filling Solutions and the Shannon Bounds

The RDF for a Gaussian source with spectrdg(e/?™/) under an MSE distortion measure is given
by:

% S j27 f
rD) =3 [ (1)

SA similar definition can be made for more general cases, when the signal is band-limited to some band which does not

start at zero frequency.



where thedistortion spectrumD(e#27/) is given by the reverse water-filling solutio?(e/?™/) =

min (95, S(eﬂ’rf)> with the water levelfs set by the distortion leveD:

1/2 .
D= D(e?*af
-1/2
The Shannon lower boun¢(SLB) for the RDF of a source band-limited s is given by:

B SDR
R(D) 2 S log = 2 Rsin(D) (12)

where SDR, thesignal-to-distortion ratiq is defined as:

A Var{S,}

SDR=
D

(13)

andl'g 2 I'(Sg) is the source prediction gainl(9). This bound is tight for ai€&dan source whenever the
distortion levelD is low enough such thab < Bgmin,<p, Ss(e/*™/), and consequentlp(e*™/) =

s = B% for all |f| < Bgs. Note that the bound reflects a coding rate gairBgf/2log(I's) with respect
to the RDF of a white Gaussian source.

The capacity of the colored channEl (2) where the ndisehas spectrunsz(e/27/), bandlimited to

C= /_ o 18 <1+ ((63]2;:2)) , (14)

where theoptimum channel input spectruf(e/27/) is given by the water-filling solutionP(e7?7f) =

B¢, is given by:

max(@c — Sz(ed?m]), 0) inside the band, with thevater leveld- set by the power constrairit:
Bc /2 .
P= / P(e?™)df

~Be/2
The Shannon upper boun@BUB) for the channel capacity is given by:

C < %bg o - (1+SNR)] 2 Csup (15)

where SNR, thesignal-to-noise ratipis defined as:

snr2 L 2 P , (16)

Nl Salei s )df

andT'¢ 2 I'(Sz) is the channel prediction gainl(8). The bound is tight for ai§s&an channel whenever
the SNR is high enough such th&t > Bc max| <, Sz(e/*™/) — N and consequently;(e/2™/) +
Py = 00 = %. Note that the bound reflects a coding rate gainBef/2log(I'c) with respect
to the AWGN channel capacity.



We now connect the capacity and RDF expressions. In termseoEDR and SNR defined above, and
denoting the inverse of the RDF by~!(-), the optimal performancé&l(1) becomes:
Var{S,}

SpRrt & Y Wns 17
R~Y(C(SNR)) (17)
Let the bandwidth ratiobe
A Be

Combining [(I2) with [(I5), we have the following asymptoligaight upper bound on the Shannon
optimum performance. It shows that the prediction gainslpcol sI'¢ gives the total SDR gain relative

to the case where the source and channel spectra are white.

Proposition 1:
SDROPt
— < T«I
(I+SNRp — 27 ¢

with equality if and only if the SLB and SUB both hold with edmaH Furthermore, if the source and
the channel noise both satisfy the Paley-Wiener condif@)nir(side their respective bandwidths, then
when the SNR is taken to infinity by increasing the power aamnst P while holding the noise spectrum

fixed:

=I'sl'c . (19)

D. Predictive Presentation of the Gaussian RDF and Capacity

Not only the SLB and SUB in[{12) an@_(15) can be written in pcédé forms, but also the rate-
distortion function and channel capacity, in the GaussasecThese predictive forms are given in terms
of the forward-channel configurations depicted in Fidure 3.

For source coding, leF} (¢/27/) be any filter with amplitude response satisfying

. D(e7*¥)
Fi(e )2 =1—- —~—~ 20
‘ 1(6 )‘ Ss(ejgﬂ-f) ) ( )
whereD(e7277) is the distortion spectrum materializing the water-fillisgiution [I1). We callF; (e727/)

and Fy(e72™f) = Fy(e/2™/) the pre- and post-filters for the sourse[34].

®The SLB and SUB never strictly hold with equality ffs(e’2"/) is not bounded away from zero, & (e?*™f) is not

everywhere finite. However, they do hold asymptoticallytia high-SNR limit, if these spectra satisfy the Paley-Wierzadition

3.
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(b) Capacity-achieving configuration using filters and wh@aussian

input.
Figure 3: Forward-channel configurations for the RDF andacip

As a consequence df (110), the pre/post filtered AWGN depiictdeigure[3a satisfies [35]:
1 Var{U, |V !
D)= -1 1+ ————>- 21
R(D) 2og( A ] ) , (21)
whereVar{Z,} = 6s. Note that in the limit of low distortion the filters vanishtegliction fromU,, is

equivalent to prediction fron¥,,, and we go back td_(12). Defining the source Wiener coefficient
as =1—exp(-2R(D)) (22)

(Z21) implies that

as

Var{U,|V" '} = 05 . (23)

1-ag
For channel coding, lef; (¢/27/) be any filter with amplitude response satisfying
P(ej27rf)

Oc ’

where P(e/2™f) and fc are the channel input spectrum and water level materiglidie water-filling

|G ()P = (24)

solution [I#).G1(e7>™f) is usually referred to as the channel shaping filter, but vatd by the the
similarity with the solution to the source problem we calkitthannel pre-filter. At the channel output
we placeGsy(e/2™/) = G (e72™/), known as a matched filter, which we call a channel post-filter

In the pre/post filtered colored-noise channel depictedigurie [3b, let the inputX,, be white and
define the (non-Gauusian, non-additive) nase= Y, — X,,. Then the channel satisfies (seé [9],1[35]):

1 Var{X,}
¢= 2 tog (Var{ZﬂZﬁQ.}}) (@3)
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WhereVar{Xn} = fAc. Note that in the limit of low noise the filters vanish, preiia from Z,, is

equivalent to prediction fron¥,,, and we go back td (15). Defining the channel Wiener coefficien
ac=1—exp(—2C) , (26)

(28) implies that
1—ac

Var{Z,|Z"}} = Oc . (27)

ac
Combining [22) with [(2B), we note that in a joint source-amalnsetting where the optimum perfor-

mance((l) is achieved,

as=ac=a . (28)

A connection between the water-filling parameters and d¢mmdil variances can be derived usingl(23)
and [27).

The predictive presentations {21) and](25) translate tloegas mutual information ratefs{Sn;S‘n)
and I(X,;Y,) to the conditional mutual information$(U,,; V,,|V"!) and I(X,; X,, + Z.|Z2"3)),
respectively. This is highly attractive as the basis forieggchemes, since it allows to use the combination
of predictors and generic optimal codebooks ¥anite sources and channels, regardless of the actual
spectra, without compromising optimality. See elg.] [13F][ In the source casd, (21) establishes the
optimality of a DPCM-like scheme, where the prediction erod U,, from the past samples df,, is
being quantized and the quantizer is equivalent to an AWGi.cRannel coding[(25) implies a noise-

prediction receiver, which can be shown to be equivalenhéoltetter known MMSE FFE-DFE solution

3.

E. Good Lattices for Quantization and Channel Coding

Let A be aK-dimensional lattice, defined by the generator ma@ix RX*X. The lattice includes
all points {1 =G -i: i€ ZX} whereZ = {0,£1,+2,...}. The nearest neighbor quantizer associated
with A is defined by

Q(x) = argmin |[x — 1],
where ties are broken in a systematic way. Let the basic \droall of A be
Vo ={x:Q(x)=0} .

The second moment of a lattice is given by the variance of Boxmidistribution over the basic Voronoi

cell, per dimension:
1 ) fvo 1| dx

o*(A) = K fv dx

(29)
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The modulo-lattice operation is defined by:
xmod A =x— Q(x) .

The following is the key condition that has to be verified i #inalysis to follow.
Definition 1: (Correct decoding) We say that correct decoding of a vectoiby a lattice A occurs,
whenever

xmod A =x ,

i.e., x €.
For a dither vectod which is independent ok and uniformly distributed over the basic Voronoi cell
Vo, [x +d] mod A is uniformly distributed oved), as well, and is independent af [33].

We assume the use of lattices which are simultaneously gmoddurce coding (MSE quantization)
and for AWGN channel codind [7]. Roughly speaking, a seqaenfcK-dimensional lattices igood
for MSE quantizationf the second moment of these lattices tends to that of a umiftistribution over
a ball of the same volume, a& grows. A sequence of lattices good for AWGN channel codinif
the probability of correct decodin@l(1) of a Gaussian i.udctor with element variance smaller than
the square radius of a ball having the same volume as theddttsic cell, approaches zero for large
K. There exists a sequence of lattices satisfying both ptiegesimultaneously, thus for these lattices,
correct decoding holds with high probability for Gaussiaxi vectors with element variance smaller than
o2(A), for large enoughk. This property also holds when the Gaussian vector is regléy a linear
combination of Gaussian and “self noise” (uniformly distried over the lattice basic cell) components.
The following formally states the property used in the séque

Definition 2: (Combination noise) Let Zq,...,Z; be mutually-i.i.d. vectors, independent &,
uniformly distributed over the basic cell df, and letZ, be a Gaussian i.i.d. vector with element variance

o?(A). Then for any real (:oe1°ficient§:f:0 oyzg, IS a combination noise with compositien, . .., af,.

Proposition 2: (Existence of good lattices) Let {Ax} denote a sequence @& -dimensional lattices
with basic cells{V } of fixed second moment®. Let {Zx } be a corresponding sequence of combination

noise vectors, with fixed composition satisfying:
L
Zalz <1l.
=1

Then there exists a sequenglx } such that:

limsup Pr{Zx mod Ax # Z;} =0 .

K—o0

12
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Figure 5: MLM Wyner-Ziv / dirty-paper coding.

This is similar to [15, Poposition 1], but with the single Ifseoise” component replaced by a

combination. It therefore requires a proof, included in dppendix.
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F. Coding for the Joint WZ/DPC Problem using Modulo-Lattiedulation

The lattices discussed above can be used for achieving thmewmp performance in the joint source/channel
Gaussian Wyner-Ziv/dirty-paper codira;depicted in Figurél4. In that problem, the source is the sum of
an unknown i.i.d. Gaussian componépt and an arbitrary componedt, known at the decoder, while
the channel noise is the sum of an unknown i.i.d. GaussiapooentZ,, and an arbitrary componeiit
known at the encoder. 10 [15] the MLM scheme of Figure 5a isxshto achieve the optimal performance
(@) for suitablea and 8. This is done showing asymptotic equivalence with high pholity (for good
lattices) to the real-additive channel of Figlire 5b. Theputpower constraint” in that last channel
reflects the element variance condition in order to ensureecbdecoding of the vecta$Q,, + Z.,,,
with high probability, according to Propositioh 2. Whensthiolds, the dithered modulo-lattice operation
at the encoder and the decoder perfectly cancel each othisrwhay, the MLM scheme asymptotically
translates the Sl problem to the simple problem of trangigitthe unknown source componep}, over

an AWGN, where the known source componédptand the channel interferendg are not present.

. THE AM SCHEME

In this section we prove the optimality of the Analog Matahstheme, depicted in Figurk 6, in the limit
of high lattice dimension. We assume for now that we h@wautually-independent identically-distributed
source-channel pairs in para&Which allows aK-dimensional dithered modulo-lattice operation across
these pairs. Other operations are done independently ailgaiTo simplify notation we omit the index
k of the source/channel paik & 1,2,..., K), and use scalar notation meaniagy of the K pairs; we
denote by bold letterg(-dimensional vectors, for the modulo-lattice operationb&ripts denote time

instants. Under this notation, the AM encoder is given by:

Uo = fi, %5,
X, = [fU,-1I,+D,]modA
I, = — i pCan—m
m=1
X, = g1,%Xn , (30)

’An alternative form of this scheme may be obtained by reptathe lattice with a random code and using mutual infornmatio
considerations; see [31].

8We will discuss in the sequel how this leads to optimality dosingle source and a single channel.
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Figure 6: The Analog Matching scheme.
while the decoder is given by:
?n = go, * Yn
~ o ~
Y/n — Yn - Z pCmYn—m
m=1
1~
Ve = 3 [Yn—/an—Dn} mod A +J,
[e.e]
Jp = ZpSkVn—k
m=1
Sn = f2n*Vn 5 (31)

wherex denotes convolution. For each filter of frequency respdiiée>™/), the corresponding impulse

response is denoted by small lettérs. Each of theK parallel channels is given by the colored noise

model [2).

The filters used in the scheme are determined by the optinfati@es presented in Sections II-C

and[-D. The channel capacity, and corresponding waietlé-, are given by[(14). This determines,

through the optimality conditiori{1), the distortion levBl Using thatD, the RDF, and corresponding

water-levelds, are given by[(Tl1). The filters; (e/>"f) and F;(e72"/) are then chosen according fa}(20),
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andG1 (e/2™/) andGo(e/?™/) according to[(24). We also useof (28). Finally, Ps(e/?™/) and Po (e/27/)
are the optimal predictor§l(6) of the spectra

11—«

j2mfy A j2m j 27
Sy (e £ | ()P Ss(e) 4+ =,

Oc (32)

and
j2rf\ A 27 V)2 2 27 )2 2 f
Sz ) 2 (1[G ) e + Gr (e )PS5 (33)

respectively, where we také'; (e/27/)|2S,(e/2™/) = 0 wherever|G;(e/>"/)| = 0 even if Sz (e2™/) is
infinite.

The analysis we apply to the scheme shows that at each tinb@ning is equivalent to a joint
source/channel side-information (SI) scheme, and thetiespfhe Modulo-Lattice Modulation (MLM)
approach presented in Sectlon]I-F. The key to the proofasveig that with high probability the correct
decoding event of Definitionl 1 holds, thus the modulo-lattiperation at the decoder exactly cancels the
corresponding operation at the encoder. As the distributiche signal fed to the decoder modulo-lattice
operation depends upon the past decisions through thes fittemory, the analysis hagecursivenature:
we show, that if the scheme is in a “correct state” at timeainst, it will stay in that state at instant

n~+1 with high probability, resulting in optimal distortion. Faally, for the decoder modulo-lattice input:
T, = B(Un - Jn) + Zeqn ) (34)

we define the desired state as follows.

Definition 3: We say that the Analog Matching schemectrectly initialized at time instancen, if
all signals at all times:, — 1,n — 2,... take values according to the assumption that correct degodi
(see Definitiori 1) held w.r.tT,, 1, T, _o,....

Using this, we make the following optimality claim.

Theorem 1:(Asymptotic optimality of the Analog Matching scheme) Let D(V, K) be the achievable
expected distortion of the AM scheme operating on inputhkdaxf time durationV with lattice dimension

K. Then there exists a sequentgX) such that
lim D(N(K),K) = D" |
K—o0

whereD°P! was defined in{|1), provided that at the start of transmisgierscheme is correctly initialized.
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Figure 7: The scheme in the high-SNR limit.

In Section[IlI-Al we gain some insight into the workings of teeheme by considering it in the
uqual-BW high-SNR regime, while in Sectién 1B we cosidbe important special cases of bandwidth
expansion and compression. Section lI-C contains thefpsbd@heorem[1, and then in Section 1}D

we discuss how one can implement a scheme based on the theorem

A. The Scheme in the Equal-BW High-SNR Regime

In the equal-BW case{s = B¢) and in the limit of high resolution/§??* < P.(Ss)), the scheme can
be simplified significantly. In this limit, the filters apprdazero-forcingones: both source and channel
pre- and post-filters collapse to unit all-pass filters, wltile source and channel predictors become just
the optimal predictors of the spectfg (¢/27/) and Sy (e/?"/), respectively. The receiver filtdr— Pc(z)
is then a whitening filter for the noise, and the channel frdm to Y, is equivalent to a white-noise
inter-symbol interference (I1SI) channel:

Yyi = Xn - Z pC’an—m + Wn ; (35)

m=1

whereW,, is AWGN of varianceP,(Sz). Under these conditions, the source can always be modeled as

an auto-regressive (AR) process:
Sn = Z pSmSn—m + Qn ) (36)
m=1

where(),, is the white innovations process, of power(Sg).

The resulting scheme is depicted in Fighte 7. It is eviddrdt the channel predictor cancels all of
the ISI, while the source predictor removes the source mgnsorthat effectively the scheme transmits
the source innovation through an AWGN channel. The gainofce and channel prediction arg =

P.(Sg)/ Var{S,} andT'c = P.(Sz)/ Var{Z,}, respectively (recall({8)). In light of_(19), the product
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of the two is indeed the required gain over memoryless tréssam. In fact, if we assume that the
modulo-lattice operations have no effect, then the entitesie is equivalent to the AWGN channel:
. W,

Sp = Sn +
)

Letting 32 = P/ Var{Q, }, we than have that:

SDR— B*Var{S,}  B*I'cSNRVar{S,}
- Var{W,} P

which is optimal at the limit, recall[(19). In order to sagisthe power constraint, the lattice second

=I'sI'cSNR

moment must beP, thus the gains amplifies the source innovations to a power equal to thecéatti
second moment; as we will prove in the sequel, this choicé mideed guarantees correct decoding, on

account of Propositioh] 2.

B. The BW Mismatch Case

At this point, we present the special caseshahdwidth expansioand bandwidth compressigrand
see how the analog matching scheme specializes to these bafieese cases the source and the channel
are both white, but with different bandwidth (BW). The sam@nd channel prediction gains are both

one, and the optimum conditioh_{17) becomes:
SDR?" = (14 SNR)” , (37)

where the bandwidth ratip was defined in[(18).

For bandwidth expansiorp(> 1), we choose to work with a sampling rate corresponding with t
channel bandwidth, thus in our discrete-time model the obkis white, but the source is band-limited to
a frequency o%. As a result, the channel predicté¥:(z) vanishes and the channel post-filters become
the scalar Wiener factat. The source water-filling solution allocates all the distor to the in-band

frequencies, thus we havg = pD and the source pre- and post-filters become both ideal |@s-fiters

1 1
V!~ sprw = \/1 " (I+SNR” - (38)

As the source is band-limited, the source predictor is mivtat and depends on the distortion level. The

of width % and height

resulting prediction error ot/,, has variance

pVar{S,}
(14 SNR”™!
and the resulting distortion achieves the optimlm (37).

Var{U,|V" !} =

)
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For bandwidth compression 1), the sampling rate reflects the source bandwidth, thusdhece
is white but the channel is band-limited to a frequencyByf = 4. In this case the source predictor
becomes redundant, and the pre- and post-filters becomesdaobriactor equal td_(38). The channel
pre- and post-filters are ideal low-pass filter of widfhand unit height. The channel predictor is the
SNR-dependent DFE. Again this results in achieving thenoyntn distortion[(3[7). It is interesting to note,
that in this case the outband part of the channel efipis entirely 1SI (a filtered version of the channel
inputs), while the inband part is composed of both chann&enand ISI, and tends to be all channel

noise at high SNR.

C. Proof of Theorem]1

We start the optimality proof by showing that the Analog Muig) scheme is equivalent at each time
instant to a WZ/DPC scheme, as in Secfion]ll-F. Specifictily, equivalent scheme is shown in Figure
[83, which bears close resemblance to Figuie 5a. The equosis immediate using the definitions of
I, B0) andJ,, (31), since they are constructed in the encoder and the decsihgpastvalues ofX,,
andV,,, respectively, thus at any fixed time instant they can be sseside information. It remains to

show that indeed the unknown noise component is white, aatli@e its variance.

Lemma 1:(Equivalent side-information scheme) Assume thatVar X,, = 6, then
A u - X
n a n
is a white process, independent of &l}, with variance

1l -«

Var{Z]} = Oc .

(07

The proof of this lemma appears in the appendix. Now we nbtg, if the modulo-lattice operations
in the equivalent scheme of Figurel 8a can be dropped, thisregllt in a scalar additive white-noise

channel (see Figuid 8):
Z

V,=U, + —n , (39)
B
where
Zeq, = aZl, — (1 - )X, (40)
is a white additive noise term of variance
Var{Z,,} = aVar{Z,} = (1 —a)ic . (41)
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Figure 8: Equivalent channels for the Analog Matching sobem

Together with the source pre/post filtefs(e/27/) and F,(e/27/), we can have the forward test channel
of Figure[3&. Furthermore, {82 equals

9_0
s

then the additive noise variance fig, resulting in optimal performance. The relevant conditirihat

2 A

By=(1-a) (42)

correct decoding (recall Definitionl 1) holds far, (34). Using the concept of correct initialization
(Definition[3), we first give a recursive claim.

Lemma 2:(Steady-state behavior of the Analog Matching scheme) Assume that the Analog Match-
ing scheme is applied, using a lattide= A of dimensionK which is taken from a sequence of lattices
of second momenf~ which are simultaneously good for source and channel coutinthe sense of
Proposition 2. Then the probability that correct decodingginot hold in the present instance can be
bounded byp.(K), where

lim pe(K)=0,

K—o0

given that the scheme is correctly initialized and that 5, (42).

20



Now we translate the conditional result above (again pramehe appendix), to the optimality claim
for blocks.

Proof of Theorem [Il We chooseN (K') to be some sequence such that

lim N(K) =00 ,

K—oo
but at the same time
lim N(K)pe.(K)=0 ,

K—oo

wherep.(K) was defined in Lemmid 2. Labor et and Dorre¢t pe the expected distortion given that
the scheme remains correctly initialized at the end of trassion or does not, respectively. By the union

bound we have that:
D(N(K),K) < D"NN(K),K) + N(K)p.(K)D" " **(N(K), K)

Since we assumed thaf (K )p.(K) vanishes in the limit of infiniteX’, so does the second term; see

[15, Appendix 1I-B]. We thus have that

lim D(N(K),K)= lim D®7"N(K),K)

K —o0 K—00
and we can assume that [(39) holds throughout the block. EBiglts in the forward channel of Figure
[33, up to two issues. First, the channel is stationary whiasmission has finite duration, and second
the additive noise variance is larger thés since3 > gy. The first may be solved by forcing,, and

V,, to be zero outside the transmission block, resulting in aresx distortion term; however this finite
term vanishes when averaging over laf§éK ). The second implies tha®??* + ¢ may still be achieved

for any e > 0, and the result follows by a standard arguments, replacipg a sequence(K) — 0

D. From the Idealized Scheme to Implementation

We now discuss how the scheme can be implemented with finigesfilhow the correct initialization
assumption may be dropped, and how the scheme may be usedifuyl@ source/channel pair.

1. Filter length. If we constrain the filters to have finite length, we may not bk do implement the
optimum filters. However, it is possible to show, that thesefffon both the correct decoding condition
and the final distortion can be made as small as desired, #iecadditional signal errors due to the
filters truncation can be all made to have arbitrarily smaliance by taking long enough filters. In the
sequel we assume the filters all have lenfjth

2. Initialization. After taking finite-length filters, we note that correct ialization now only involves a

finite history of the scheme. Consequently, we can create this Bjaadding a finite number of channel
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uses. Now we may create a valid state for the channel predii¢e’>™/) by transmitting L values
X,, = 0; see[[12]. For the source predictor the situation is morelirad, since in absence of past values
of V,,, the decoder cannot reduce the source power to the innasgtiower, and correct decoding may
not hold. This can be solved by de-activating the prediaborttie first L values ofU,,, and transmitting
them with lower such that[(84) holds without subtracting. Now in order to achieve the desired
estimation error for these first values 6f, one simply repeats the same value$/gfa number of times
according to the (finite) ratio of’s. If the block lengthV is long enough relative td, the number of
excess channel uses becomes insignificant.

3. Single source/channel pair. A pair of interleaver/de-interleaver can serve to emul&teparallel
sources, as done in[12] for an FFE-DFE receiver, and extetudi&ttice operations in [36]. Interestingly,
while a separation-based scheme which employs time-dopraicessing for both source and channel
parts requires two separate interleavers, one sufficehi@oAM scheme. Together with the initialization
process, we have the following algorithm.

encoder:

1. Write U,, row-wise into an interleaving table.

2. Before each row, add source initialization samples.

3. Build a table forX,, starting by zero columns for channel initialization. Thefd more columns
using column-wise modulo-lattice operations on the talilé/g, using row-wise past values of,, as
inputs to the channel predictor.

4. Feed theX,, table to the channel pre-filter row-wise.

decoder:

1. Write Y, row-wise.

2. Discard the first columns, corresponding to channelailizgtion.

3. Build a table forV,,, starting by using the source initialization data. Then adde columns using
column-wise modulo-lattice operations on the tabl&’pf using row-wise past values &f, as inputs to
the source predictor.

4. Feed théV, table to the source post-filter row-wise.

IV. UNKNOWN SNR

So far we have assumed in our analysis that both the encodetemoder know the source and channel
statistics. In many practical communications scenariogjgver, the encoder does not know the channel,

or equivalently, it needs to send the same message to diffesers having different channels. Sometimes
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it is assumed that the channel filtéfy(e/27/) is given, but the noise leveV is only known to satisfy
N < Ny for some given)N,. For this special case, and specifically the broadcast bidtitwxpansion
and compression problems, seel[25],1[18],] [24].] [22].

Throughout this section, we demonstrate that the key fantasymptotic behavior for high SNR is
the bandwidth ratigp (18). We start in Sectioh TVZA by proving a basic lemma regagdachievable
performance when the encoder is not optimal for the actuahiél. In the rest of the section we utilize
this result: in Sectiofi IV-B we show asymptotic optimalityr funknown SNR in the case = 1, then
in Section[IV-C we show achievable performance for the spemases of (white) BW expansion and

compression, and finally in Sectibn TM-D we discuss genguata in the high-SNR limit.

A. Basic Lemma for Unknown SNR

We prove a result which is valid for the transmission of a oedbsource over a degraded colored
Gaussian broadcast channel: We assume that the channedishyi (2), whereB is known but the noise
spectrumSyz(e727/) is unknown, except that it is bounded from above by some sg®csq(e/>™/)
everywhere. We then use an Analog Matching encoder optiotabf(e727/), as in Theoreni]1, but
optimize the decoder for the actual noise spectrum. Codecoding undetSzy(e?>™f) ensures correct
decoding undetSz(e72™/), thus the problem reduces tolinear estimation problem, as will be evident
in the proof.

For this worst channe$ ;o (e?>"f) and for optimal distortion[(17), we find the water-filling atibns
(@1),(14), resulting in the source and channel water lef/glandé respectively, and in aource-channel
passbandFy, which is the intersection of the inband frequencies of terse and channel water-filling

solutions:
Fs = {f:S8s(e”) =05},
Fo = {f:8z,*) <o}
Fo = FsNFco . (43)

Under this notation we have the following lemma, proven ia #ppendix. It shows that the resulting
distortion spectrum is that of a linear scheme which tratsiiie source into a channel with noise
spectrumP/®(ei2™/), where

D(el?™) = SZ"(e?Wf) 1— Sz,(e7*™7) — Sz(e7*™)] Ss(e”*™)) — b5
Sl = 7

depends on both the design noise spectrum and the actual one.
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Lemma 3:For any noise spectrurfizo(e’?"/), there exists an encoder, such that for any equivalent
noise spectrum

Sz (™) < Szo(e”™) Y f € Fo (44)

a suitable decoder can arbitrarily approach:

D:/2 D(*)df
where the distortion spectrui(e/>/) satisfies:

D(e/?™f) = T+ ®(er2 7)) if fe X

. (45)
min (Ss(eﬂ”f), 95) , otherwise

Remarks:

1. Outside the source-channel passb&pdthere is no gain when the noise spectrum density is lower
than expected. Insid&,, the distortion spectrum is strictly monotonously deciegén Sz (e/2™f), but
the dependence is never stronger than inversely propattittrfollows, that the overall SDR is at most
linear with the SNR. This is to be expected, since all the gaimes from linear estimation.

2. In the unmatched case modulation may change performaimeg.is, swapping source frequency
bands before the analog matching encoder will chafigand®(¢727/), resulting in different performance
asSz(e/?7f) varies. It can be shown that the best robustness is achigvedsy (e/2"/) is monotonously
decreasing inSz(e?2™/).

3. The degraded channel conditidnl(44) is not necessarygteti condition for correct decoding to
hold can be stated in terms 8 (e727/), Szo(e2™/) andSz(e/>™/): the integral oveS,,(e/?"/), defined

in the appendix[(85), must be at most as it is for the spectyfa’>"/).

B. Asymptotic Optimality for equal BW

We prove asymptotic optimality in the sense that, if in an ¢8annel (recall[(35)), the ISI filter is
known but the SNR is only known to be above some gNiRen a single encoder can simultaneously

approach optimality for any such SNR, in the limit of highV R,.

Theorem 2:(High-SNR robustness) Let the source and channel have BWW= Bc = 1, and let

the equivalent ISI model of the channél[35) have fixed filteefficients (but unknown innovations
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power Var{W,}). Then, there exists aBNR-independersequence of encoders indexed by their lattice

dimensionK, each achieving SDR(SNR), such that for any > 0:

lim SDRy(SNR) > (1 — §)SDR**(SNR)

K—o0

for sufficiently large (but finite) SNR, i.e., for all SNR SNRy(9).

Proof: The limit of a sequence of encoders is required, since any fixdéte-dimensional encoder
has a gap from SDR!' that would limit performance as SNR> co. At the limit, however, we may
assume an ideal scheme. In terms of the colored noise ch@@@ne¢he unknown noise variance in the
theorem conditions is equivalent to having noise spectrum

SNRy
SNR

where SNR> SNR, = SNRy(J). We apply Lemmal3, with an encoder designed $gp (e/27/). If the

Sz(e??™) = Szo(e*™7)

source spectrum is bounded away from zero andSthge/2"/) is bounded from above, we can always
take SNR high enough such that the source-channel passiFgndcludes all frequencies, and then we

have for all SNR> SNRy:

- 1 SNR
2nfy « = .
D™ < 75 SNR?
resulting in
SNR SNR
>(1—0)—nn—o =(1-§)—1 =(1— Pl
SDR> (1 6)SNROSDPO (1 5)SNROFSFC(1+SNPO) (1 —0)SDR’

where the equalities are due to Proposifibn 1. If the spexanot bounded, then we artificially set the
pre-filters to bel outside their respective bands (and apply an additional gabrder to comply with
the power constraint). This inflicts an arbitrarily small Bbss at SNR, but retains SDRx SNR, thus
the gap from optimality can be kept arbitrarily small. |
Alternatively, we could prove this result using a the zewveeing scheme of Figurel 7. In fact, using
such a scheme, an even stronger result can be proven: notanlyhe encoder be SNR-independent,

but so can the decoder.

C. BW Expansion and Compression

We go back now to the cases of bandwidth expansion and cosipnegiscussed at the end of Section

[ In these cases, we can no longer have a single Analog Wfagcencoder which is universal for
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different SNRs, even in the high SNR limit. For bandwidth axpion p > 1), the reason is that the
source is perfectly predictable, thus at the limit of highFSive have that

Var{U,|V,-1, Vh—2,...} = Var{U,|Up-1,Up—2,...} =0

thus the optimun® goes to infinity. Anys value chosen to ensure correct decoding at some finite SNR,
will impose unbounded loss as the SNR further grows. For Wadtd compression, the reason is that
using any channel predictor suitable for some finite SNR, aelin the equivalent noisg, = Y;, — X,,
some component which depends on the channel input (set hyittier). As the SNR further grows, this
component does not decrease, inflicting again unbounded los

By straightforward substitution in Lemnia 3, we arrive at fblowing.

Corollary 1: Assume white source and AWGN channel where we are allowethannel uses per
source sample. Then using an optimum Analog Matching endodesignal to noise ratio SNRand a
suitable (SNR-dependent) decoder, it is possible to appré@ any SNR> SNR;:

11 — min(1, p) n min(1, p)

46
SDR (HSNPO)f’ 1+ 3,(SNRSNR)) (46)

where 1+ SNR
<I>p(SNR,SNR))élim[(1+SNR))p—1} . (47)

Note that the choice of filters in the SNR-dependent decosl®ams simple in this case: Fpr> 1
the channel post-filter is flat while the source post-filteamsideal low-pass filter, while fop < 1 it is
vice versa. The only parameters which change with SNR, &edhlar filter gains.

Comparison of performance: In comparison, the performance reported by different nathio [18],

[24] for these cases has, in terms [of1(46):
®,(SNR SNR)) = (1 + SNR) - (1 + SNRy)* ™ — 1 (48)

while [24] also proves an outer bound for BW expansiprni>( 1) on any scheme which is optimal at
some SNR:
SNR

@,(SNR SNRy) = g | (14 SNR))” 1} . (49)

In both BW expansion and compression, the Analog Matchirges®e does not perform as good as
the previously reported schemes, although the differeaogsties for high SNR. The basic drawback of

analog matching compared to methods developed specififtallihese special cases seems to be, that
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Figure 9: Unknown SNR performance: BW expansion and corsfres The best known achievable

performance, brought for comparison, is duelto [18]] [24].

these methods apply different “zooming” to different s@uoc channel frequency bands, analog matching
uses the same “zooming factof’ for all bands. Enhancements to the scheme, such as the catinhin
of analog matching with pure analog transmission, may iwgtbese results. Figure MC demonstrates
these results, for systems which are optimal at differenR 3évels.

At high SNR, the performance of all these methods and of therdabund converge to:

1 1—min(p,1) min(p, 1)
SDR SNR) SNR- SNR‘)’—1 '
Thus the Analog Matching scheme, as well as the schemes hf[Pd, are all asymptotically optimal

(50)

for high SNR among the schemes which achieve 3bBt some SNR.

D. Asymptotic Behavior with BW Change

Finally we turn back to the general case of non-white spegiita any p, and examine it in the high-
SNR regime. As in Section IVAB, we assume that the channéelilt8t is known, corresponding with an
equivalent noise spectrusi; (e/>~f) known up to a scalar factor.

In the high-SNR limit, Lemmal3 implies:

1 1 — min(p, 1) min(p, 1)
= Iels . 51
SDR SNR) SNR-SNRS_I oL s (51)
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Comparing with [(BD), we see that the color of the source antth®fhoise determines a constant factor
by which the SDR is multiplied, but the dependence upon th&® $&mains similar to the white BW

expansion/compression case. The following definition fires this behavior (see [16]).

Definition 4: The distortion slopeof a continuum of SNR-dependent schemes is :

log SDR
SNR-s oo log SNR

1>

A

(52)

where SDR is the signal to distortion attained at signal tisenoatio SNR, where the limit is taken for

a fixed channel filter with noise variance approaching

We use the notation = \(p) in order to emphasize the dependance of the asymptotic siope the

bandwidth expansion factor. The following follows dirgcffom Propositiori L.

Proposition 3: For any source and channel spectra with BW rati@nd for a continuum of schemes
achieving the OPTA performance {17),

Ap)=p .

As for an analog matching scheme which is optimal for a siBMR, [51) implies:

Corollary 2: For any source and channel spectra and for a single analtgtimg encoder,

1, ifp>1
Alp) = _
0, otherwise

is achievable.

This asymptotic slope agrees with the outer bound af [24§tfer(white) bandwidth expansion problem.
For the bandwidth compression problem, no outer bound isvknbut we are not aware of any proposed

scheme with a non-zero asymptotic slope. We believe thiettrue for all spectra:

Conjucture 1: For any source and channel spectra of BW rationo single encoder which satisfies

(I7) at some SNjRcan have a better slope than that of Corolldry 2.

By this conjecture, the analog matching encoder is asyneptiyt optimal among all encoders ideally
matched to one SNR. It should be noted, that schemes whiclodsatisfy optimality at one SNRan

in fact approach the ideal slopép) = p. See e.g. approaches for integesuch as bit interleaving [26].
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V. CONCLUSION: IMPLEMENTATION AND APPLICATIONS

We presented the Analog Matching scheme, which optimalyndamits a Gaussian source of any
spectrum over a Gaussian channel of any spectrum, withaartneg to any data-bearing code. We
showed the advantage of such a scheme over a separatiahgzdsgon, in the sense of robustness for
unknown channel SNR.

The analysis we provided was asymptotic, in the sense thdgladimensional lattice is needed.
However, unlike digital transmission (and hybrid digitalalog schemes) where reduction of the code
block length has a severe impact on performance, the seadgapproach offers a potential advantage
in terms of block-length. An asymptotic figure of merit wheve expect this advantage to be revealed, is
the excess-distortion exponent. Furthermore, the molddtice framework allows in practice reduction
to low-dimensional, evescalar lattices, with bounded loss.

One approach for scalar implementation of the Analog Maighicheme, usesompanding17]. In
this approach, the scalar zooming factbiis replaced by a non-linear function which compresses the
unbounded Gaussian source into a finite range, an operatichws reverted at the decoder. There is
a problem here, since the entity which needs to be compréssattually the innovations process,,
unknown at the encoder since it depends on the channel Nidige can be solved by compressigy,,
the innovations of the source itself; The effect of this “@anding encoder-decoder mismatch” vanishes
in the high-SNR limit. An altogether different approachtdsavoid instantaneous decoding of the lattice;
Instead, the decoder may at each instance calculate theespuediction using several hypothesis in
parallel. The ambiguity will be solved in future instancpessibly by a trellis-like algorithm.

In terms of delay, the AM scheme has an additional advantegepreviously suggested HDA schemes.
It is well known that time-domain approaches have a delayaathge over frequency-domain one, in
both source and channel coding. A fully-causal DPCM, fornepie, can approach the RDF while only
using causal filters, on the high-resolution limit. A subbacoding scheme, in contrast, would have to
use a delay-consuming DFT block; see €.g! [13].

Finally, we remark that the AM scheme has further applicetidt possesses the basic property, that
it converts any colored channel to an equivalent additivetavhoise channel of the same capacity
as the original channel, but of the source bandwidth. In timt lof high-SNR, this equivalent noise
becomes Gaussian and independent of any encoder signalprbpierty is plausible in multi-user source,
channel and joint source/channel problems, in the preseinicandwidth mismatch. Applications include

computation over MACs [21], multi-sensor detection|[20flaransmission over the parallel relay network
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[14].

APPENDIX
A. Proof of Propositioi 12

By [8, (200)], for each of the componenis:

Liog 223) < cip ) (53)

no Sz T

wheref(-) denotes a probability density function (pdfj; is AWGN with the same variance &, and
e(Ax) — 0 as K — oo for a sequence of lattices which is Rogers-good (i.e. ktifor which volume
of the covering sphere approaches that of the Voronoi ddtyy assume without loss of generality that
of is a non-increasing for > 0, and for some fixed let L’ be the minimal index such that

i ozl2 <4 .
I=L'+1

Let Zs = .17, @ Z;. Using [53) and convolution of pdfs,

l]ogfzé_(z) < '(Ag)

o7 fzye T

9

where Z5 is AWGN with the same variance &. Sincee!’ approaches zero as a function &gt

lim PI‘{Z() + Zs Qf VK} =0 ,
K—o0

for lattices which are good for AWGN coding.

We are left with the “tail’ Z = > 1= 141 Q1 Z;, which has variancé. By continuity arguments,
(Slmoq+ Pr{Zo+ Zs+Z ¢ Vi|Zo+ Zs € Vk} =0 .
—

The result follows now by standard arguments of takingnd § to zero simultaneously. We have
assumed the use of a sequence of lattices that is simultalyeRagers-good and AWGN-good. By| [7],

such a sequence indeed exists.
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B. Proof of Lemmall
By the properties of the modulo-lattice operatiofi, is a white process. Now the channel frak,
to Y, is identical to the channel of (5), thus we have that:
Yyi = (Xn +Zn) * (5n —Pcn) = Xn +In+Z;L/ 5

where Z,, has spectruns ;(e/>"/) @33), and consequentl§l’/ = Z,, * (6, — pc,,) is its white prediction
error, with variancé;—o‘ec according to[(27). Now sincE, = Y, —1I,, is the optimum linear estimator for
X,, from the channel output, the orthogonality principle diesathat the estimation error is uncorrelated

with the proces¥’/, resulting in an additive backward channel (see é.d. [35]):

X, =Y -I,+2" .
Switching back to a forward channel, we have

YV =a(X,+2Z)+ 1, ,

where Z/ is white with the same variance @&. Furthermore, since’/, is a function of the processes

{X,} and{Z,}, it is independent of allJ,,.

C. Proof of Lemm&l2

By the properties of the modulo-lattice operation,
T, = ﬁ(Un - Jn) + Zeqn s

resulting in the equivalent channel of Figlird 8b. By the ectrinitialization assumption|_(89) holds for
all past instances, thug,, is a combination noise (see Definitibh 2). In light of Propiosi[2, it is only
left to show that the variance df,, is strictly less than the lattice second momépt To that end,
note that under the correct initialization assumption,ghst samples of the procegs indeed behave as

samples of a stationary process of spectigiate’?™/) B2), for which Ps(e/27f) is the optimal predictor.
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It follows that U,, — J,, is white, with variance

Var{U, — J,} = Var{U,|V,-1,Vi-2,...}

() Var{Z.,, } Var{Z.,, }
2 P (su+ = )- =
2 2

= Pe<SU+%95>—%93

2
< %[Pe(SUJr@S)—QS]
® b _«
e 1——(193

Oé@c
= F’

where (a) holds by [(10), andb) holds by applying the same in the opposite direction, coetbiwith
(23). By the whiteness af.,,, and its independence of dll,, we have thal/,, — J, is independent of

Zeq,,» thus the variance df), is given by
Var{T,,} = 8> Var{U,, — Jn} + Var{Z.,, } < bc . (54)

The margin fromd depends on the margin in the inequality in the chain abové;wtlepends only on

Sy (e7?71), §c and 3, and is strictly positive for alp < f.

D. Proof of Lemmal3

We work with the optimum Analog Matching encoder for the moEpectrumsSy,(e27/). At the
decoder, we note that for any choice of the channel post-iltge/2"/), we have that the equivalent
noise Z.,, is the noiseZ, 2, — X, passed through the filtar— P (e727/). Consequently, this noise
has spectrum:

Seql @) = (P71 = Po(?)[2 |

The filter G2 (e/2™/) should, therefore, be the Wiener filter which minimizgg(e/2™/) at each frequency.

This filter achieves a noise spectrum

- Oc — Szo(e?m))
5 27rf _ C Z0
SZ(ej ) - 90 _ SZO(ejZWf) + SZ(€j27rf)SZ(e

inside 7, andd¢ outside. Denoting the variance of the (white) equivalems@m the case€zo(e/2™/) =
Sz(e7*)) as Sy = (1 — a)fc @), we find that:

j2ﬂf)

Sobc
(6c — Szo(e7271))Sz0(ed?77)

1= Po(e™™)? =
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inside F¢, and Sy /0 outside. We conclude that we have equivalent channel noiespectrum

) j2rf J2mfy _
Seqehy = 527 o g, = Sste”™) —bs
Szo(eﬂwf) Oc — 520(6327rf) + Sz(eﬂwf) @(6327rf)93

inside F¢, and Sy outside. Now, since this spectrum is everywhere upper-tedry Sy, we need not

So (55)

worry about correct decoding. The source post-filter inguthie source, corrupted by an additive noise
Zeq,,/ B, With spectrum arbitrarily close to

Seq(ejzﬂf) . Ss(€j27rf) — 93
C I G

inside F¢, andfgs outside. Now again we face optimal linear filtering, and waaee the source post-filter

Fy(e7*f) by the Wiener filter for the source, to arrive at the desirezliite
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