
Bliudze, Bruni, Grohmann, Silva (Eds.):
Third Interaction and Concurrency Experience (ICE 2010)
EPTCS 38, 2010, pp. 115–119, doi:10.4204/EPTCS.38.11

c© R. Sirdey & P. Aubry
This work is licensed under the
Creative Commons Attribution License.

A linear programming approach to general dataflow process
network verification and dimensioning

Renaud Sirdey Pascal Aubry
CEA, LIST

Embedded Real-Time System Lab
91191 Gif-sur-Yvette Cedex, France

renaud.sirdey@cea.fr p.aubry@cea.fr

In this paper, we present linear programming-based sufficient conditions, some of them polynomial-
time, to establish the liveness and memory boundedness of general dataflow process networks. Fur-
thermore, this approach can be used to obtain safe upper bounds on the size of the channel buffers of
such a network.

1 Introduction

With the frequency version of Moore’s law coming to an end, a new generation of massively multi-core
microprocessors is emerging. This has triggered a regain of interest for the so-called dataflow program-
ming models in which one expresses computation-intensive applications as networks of concurrent tasks
interacting through (and only through) unidirectional FIFO channels.

Our main result is a linear programming model (Sect. 2) of the states of a general Dataflow Process
Network (DPN), in the sense of Lee & Parks [1], which allows to obtain a polynomial-time sufficient
condition for both liveness (in a sense which is defined in Sect. 3) and memory boundedness (Sect. 4).
Furthermore, this approach can be turned into a safe buffer dimensioning method.

2 Modelling system states

2.1 Notations and general assumptions

Let T and F respectively denote the set of tasks and channels.
To each task t ∈ T , we associate a state-transition graph Gt = ({v(0)t } ∪Vt ,{τ(0)

t } ∪ At) (parallel
arcs and loops are allowed), where v(0)t denotes the initial state of task t and where τ

(0)
t denotes the

initial transition of that task, this transition being unique and unconditional. Also, given t ∈ T , Pt ⊆ F
(respectively Ct ⊆ F) denotes the set of channels in which t produces (respectively consumes) data.
Note that we have Pt ∩Ct = /0. Also note that for each t, t ′ ∈ T 2, t 6= t ′, we have Pt ∩Pt ′ = /0 as well as
Ct ∩Ct ′ = /0.

Let t ∈ T , τ ∈ At and f ∈ Pt (respectively f ∈Ct), qpτ f (respectively qcτ f) denotes the amount of data
produced (respectively consumed) in channel f by task t when transition τ is executed. An additional
constraint is that, ∀t ∈ T , ∀τ ∈ At ,

∑
f∈Pt

qpτ f + ∑
f∈Ct

qpτ f > 0, (1)

thereby excluding the existence of transitions having no effect on any of the channels.

http://dx.doi.org/10.4204/EPTCS.38.11
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

116 A linear programming approach to general DPN verification and dimensioning

Given f ∈ F , p f and c f respectively denote the tasks which produce and consume data in channel f .
Also, d f denote the capacity of the buffer associated to channel f (depending on the problem at hand d f

can be either given or unknown, as we shall later see).
In the sequel, it is further assumed without loss of generality that the network graph, the directed

graph having the tasks as vertices and the channels as arcs, is (simply) connected.

2.2 Variables and linear constraints

For all τ ∈
⋃

t∈T{τ
(0)
t }∪At , we introduce a variable denoted by nτ ∈ Z+ which indicates the number of

times transition τ has been executed. In order for the nτ to represent admissible system states, a number
of (linear) constraints must be satisfied.

Initialization constraints. Let t ∈ T , initial transition τ
(0)
t must have been executed once and only

once, thus, n
τ
(0)
t

= 1.
Conservation constraints. Let t ∈ T and v ∈Vt . We then have the following constraint:

∑
τ∈ω−(v)

nτ −1≤ ∑
τ∈ω+(v)

nτ ≤ ∑
τ∈ω−(v)

nτ .

Such a constraint simply reflects the fact that for the nτ ’s to represent an admissible system state, vertex
v must have been left as many times it has been entered or as many times minus one (in which case it
defines the current state of t). If ∑τ∈ω+(v) nτ = ∑τ∈ω−(v) nτ − 1, then the system state described by the
nτ ’s is such that task t is in state v.

For convenience, let γv = ∑τ∈ω−(v) nτ −∑τ∈ω+(v) nτ meaning that γv = 0 if task t is not in state v and

1 otherwise. Remark that state v(0)t is duly excluded from the previous sums as this state is by definition
left once and never entered.

Unicity constraints. Furthermore, for the system state described by the nτ ’s to be admissible, each
task must be in one and only one state. That is, for each t ∈ T , if ∑v∈Vt γv = 1. Again, note that v(0)t is
duly excluded from the previous sum.

Consistency constraints. Let f ∈ F , let qp f = ∑τ∈Ap f
nτqpτ f and qc f = ∑τ∈Ac f

nτqcτ f respectively
denote the amount of data so far produced and consumed on channel f (for convenience). For the nτ ’s to
describe a valid system state, we must have qp f ≥ qc f .

Capacity constraints. Also, for each f ∈ F , we must have

qp f −qc f ≤ d f . (2)

3 Modelling undesirable system properties

3.1 Strong and weak blockedness

In a given system state, a task t ∈ T is strongly blocked when it is in a state v in which no outgoing
transition can be executed. Consider the following sets of constaints, for each τ = (v,v′) ∈ At ,

γv ≤ 0, (3)

qp f −qc f ≤ qcτ f −1, for each f ∈Ct , (4)

qc f −qp f ≤ qpτ f −d f −1, for each f ∈ Pt . (5)

R. Sirdey & P. Aubry 117

Then, strong blockedness means that for each τ = (v,v′) ∈ At either constraint (3) or at least one the
constraints of type (4) or at least one of the constraints of type (5) is satistifed for task t.

In a given system state, a task t ∈ T is weakly blocked when it is in a state v in which not all outgoing
transitions can be executed. Consider the following sets of constraints, for each t ∈ T and for each v∈Vt ,

γv ≤ 0, (6)

qp f −qc f ≤ qcτ f −1, for each τ = (v,v′) ∈ At and for each f ∈Ct , (7)

qc f −qp f ≤ qpτ f −d f −1, for each τ = (v,v′) ∈ At and for each f ∈ Pt . (8)

Then, weak blockedness signifies that for each t ∈ T and for each v ∈ Vt either constraint (6) or at least
one the constraints of type (7) or at least one of the constraints of type (8) is satistifed for task t.

The above strong blockedness property is suitable to model non deterministic tasks whereas the weak
blockedness property allows modelling deterministic ones (enforcing the fact that, when the task is in a
given state, all outgoing transitions are feasible so as to guarantee that the next transition the task has to
do is possible).

3.2 Sufficient liveness conditions

Although the definitions of the strong and weak blockedness properties involves disjunctive constraints,
these can be linearized using standard linear programming modelling techniques (see e.g., [2]).

Thus, given a DPN and a dimensioning d ∈ Z|F | we have shown how to formulate an integer linear
system of inequalities,

{x ∈ Zn : Ax≤ b(d)} (9)

which inconsistency, i.e. {x : Ax≤ b(d),x∈Zn}= /0, is sufficient to establish the liveness of the network.
A fortiori, the inconsistency of the continuous relaxation of that system, {x : Ax ≤ b(d),x ∈ Rn} = /0,
provides a polynomial-time (weaker) sufficient condition to establish that property.

4 Memory boundedness of a DPN

4.1 Monotony with respect to dimensioning

As shown by Lee & Parks [1] the DPN formalism is equivalent to the well-known Kahn Process Networks
(KPN) formalism. Thus, DPN also exhibit the determinism property exhibited by KPN whereby, for a
given input, the data circulating on the channels does not depend on the execution trace. This very
convenient property allows, still for a given input, to derive general network properties from properties
exhibited by particular traces of execution.

The KPN formalism assumes blocking reads and non blocking writes, which may induce an infi-
nite memory requirement on some channels. However, a KPN K subject to capacity constraints on its
channels can straightforwardly be turned into another KPN K(d) (d ∈ Z+n): all is needed is to emulate
a blocking write with a blocking read e.g., to mirror each channel f by an opposite channel f ′ initially
provided with d f data and to require that each write, respectively read, operation on f be mirrored by a
equivalent read, respectively write, operation on f ′. Of course, the properties of KPN K with respect to
the data circulating on the channels are not preserved by this transformation and, in particular, K(d) may
not be deadlock-free despite of the fact that K is.

In essence, the liveness property defined in the previous section ensures that, for all possible inputs,
an infinite amount of data circulates on at least one channel. Assume that a KPN K(d) is live, then

118 A linear programming approach to general DPN verification and dimensioning

a straightforward consequence of the determinism property of KPN is that any KPN K(d′) such that
d′ ≥ d (i.e., ∀ f ∈ F , d′f ≥ d f) is also live. Indeed, the liveness of K(d) implies that, for any input α , any
given trace of execution ω(α) of K(d) is such that an infinite amount of data circulates on at least one
channel and since ω(α) is also a valid trace of execution of K(d′), from the determinism property, all
traces of execution of K(d′) on α are also such that an infinite amount of data circulates on at least one
channel and, thus, K(d′) is live. It follows that, given a DPN, if we can find d ∈ Z|F | such that either
{x : Ax ≤ b(d),x ∈ Zn} = /0 or {x : Ax ≤ b(d),x ∈ Rn} = /0, then for any d′ ∈ Z|F | such that d′ ≥ d, the
DPN is live.

4.2 Verifying memory boundedness

Recall integer linear system (9), assume that d f = z (∀ f ∈ F) and consider the following Integer Linear
Program 

zIP = Maximize z

A′y≤ b′,

y ∈ Zn+1, (10)

where vector y is the concatenation of vector x and scalar z. This program is straightforwardly derived
from system (9) by replacing d f by z in constraints (2) as well as constraints (5) or (8) (depending on
which of the two applies) and by moving z to the LHS.

In essence, from the monotony property derived in Sect. 4.1, any solution to the above program
provides the largest value of z such that the network is not live and, thus, for any dimensionning d ∈ Z|F |
such that ∀ f ∈ F , d f ≥ zIP the network is live. Three cases can then occurs. Case 1: the ILP has no
solution, a degenerate case which can occur only for networks with no channels (since, due to Eq. (1),
all transitions are effective). This latter case in hereafter ignored. Case 2: zIP < ∞, which is sufficient
to establish that the network is live and memory bounded. Case 3: zIP = ∞ in which case we cannot
conclude with respect to both liveness and memory boundedness. Furthermore, when zIP < ∞, letting
d f = zIP+1 (∀ f ∈F) gives a (presumably small) channel buffer dimensioning which guarantees liveness.

Again, it is possible to consider the continuous relaxation zLP of program (10). In particular, when
one wishes only to determine wether or not zIP < ∞ then it is necessary and sufficient to determine
whether or not zLP < ∞ as zIP < ∞⇔ zLP < ∞. Indeed, a well known fact in the theory of linear and
integer programming [2] states that if the integer hull PI of a rational polyhedron P (i.e., the convex hull
of the integral vectors in P) is nonempty then max{cx : x ∈ P} is bounded if and only if max{cx : x ∈ PI}
is bounded and, provided that 0 ∈ {y : A′y ≤ b′,y ∈ Zn+1}, this result applies to program (10) and its
relaxation. It follows that zLP < ∞ provides a polynomial-time sufficient condition to establish both
liveness and boundedness of a DPN which is equivalent to zIP < ∞.

5 Remarks on algorithmic aspects

Although zLP can be computed in polynomial-time, it can be expected, when zLP < ∞, that the integrality
gap, zLP− zIP, is often quite large. Thus, should one wishes to obtain a tight (if not the tightest) upper
bound on the channel buffer dimensioning, there is a practically relevant need to either solve program
(10) or at least to decrease the aforementioned integrality gap.

Regarding the resolution of program (10), it should be emphasized that the polyhedron PI = {y : A′y≤
b′,y∈Zn+1} (recall that the integer hull of a polyhedron is also a polyhedron) is generally not a polytope

R. Sirdey & P. Aubry 119

(since the nτ are not necessarily bounded). Therefore, in the general case, procedures which enumerate
integer points inside the polyhedron, as those used in most off-the-shelf integer linear programming
solvers, are doomed not to terminate.

Thus, in order to guarantee termination in the present context, an (exterior) cutting plane approach
must be used. As an example, Gomory’s cutting plane algorithm is guaranteed to terminate (though
generally after a prohibitively long time). A more practically promising approach, consists in using
specially tailored classes of inequalities derived from a polyhedral study of the geometric structure of PI

so as to derive a custom cutting plane algorithm.

References
[1] E. A. Lee & T. M. Parks (1995): Dataflow process networks, Proceedings of the IEEE 83(5), pp. 773-779.
[2] G. L. Nemhauser and L. A. Wolsey (1999): Integer and combinatorial optimization, Wiley.

	1 Introduction
	2 Modelling system states
	2.1 Notations and general assumptions
	2.2 Variables and linear constraints

	3 Modelling undesirable system properties
	3.1 Strong and weak blockedness
	3.2 Sufficient liveness conditions

	4 Memory boundedness of a DPN
	4.1 Monotony with respect to dimensioning
	4.2 Verifying memory boundedness

	5 Remarks on algorithmic aspects

