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Abstract—We propose an iterative mode-dropping algorithm
that optimizes input signals to achieve the sum capacity of the
MIMO-MAC with per-antenna power constraint. The algorithm
successively optimizes each user’s input covariance matrix by
applying mode-dropping to the equivalent single-user MIMO rate
maximization problem. Both analysis and simulation show fast
convergence. We then use the algorithm to briefly highlight the
difference in MIMO-MAC capacities under sum and per-antenna
power constraints.

Index Terms—Multiple-access channels (MAC), Multiuser
MIMO, per-antenna power, sum capacity

I. INTRODUCTION

Under sum power constraint, the capacity of MIMO chan-
nels has already been well-established. With channel

state information (CSI) available at both the transmitter and the
receiver, the single-user capacity is achieved by diagonalizing
the channel matrix then water-filling the total power across
the spatial subchannels [1]. Based on this single-user water-
filling algorithm, the sum capacity of the MIMO multiple
access channel (MIMO-MAC) can be efficiently computed
in an iterative manner, by optimizing the transmit covariance
matrix of each user successively while treating the signals from
all other users as noise [2].

Sum power constraint is, however, less practical than per-
antenna constraint because the power amplifier at each antenna
has its own output dynamic range [3]. The capacity under
this per-antenna power constraint has been investigated for
different channel models. For single-user MISO channels, the
capacity can be expressed in closed form and is achieved
by a single-mode beamformer, with its phase matched to
that of the channel vector and its amplitude determined by
the power constraint [4]. For single-user MIMO channels,
the capacity optimization problem can be formulated in the
framework of semidefinite programming and a simple adaptive
mode-dropping algorithm computes the capacity by solving the
Karush-Kuhn-Tucker (KKT) conditions efficiently [5]. For the
MIMO-MAC, although the sum-rate maximization problem
is convex and hence readily solvable using interior-point
methods, the computational complexity could be impractically
high when the system has a large number of users or antennas.

In this regard, we propose a more efficient algorithm
called iterative mode-dropping to find the optimal transmit
covariance matrices that achieve the sum capacity of the
MIMO-MAC with per-antenna power constraint. In a way
similar to the iterative water-filling algorithm [2], iterative

mode-dropping optimizes the transmit covariance matrices
successively. In each step, it optimizes the covariance matrix
of one user based on the mode-dropping algorithm for single-
user MIMO channels, while holding those of the other users
constant. The algorithm converges surely to the sum capacity
and simulation results show fast convergence, typically within
10−6 bps/Hz of the sum capacity after 10 iterations (i.e., each
user has updated its covariance matrix 10 times). We also use
the algorithm to compare the sum capacity under different
power constraints and study the effects on capacity of SNR,
the number of users and the number of antennas.

The following notation is used: an italic letter, boldface
lowercase or boldface uppercase letter represents a scalar,
column vector or matrix, respectively. (·)T or (·)† denotes
transpose or conjugate transpose of a matrix. Tr(·) is the trace
and det(·) is the determinant of a matrix. The operator <
and 4 represent positive semidefinite ordering of Hermitian
matrices. diag{·} or diag(·) forms a diagonal matrix with
given entries or from the diagonal entries of the given matrix,
respectively. I is an identity matrix of appropriate dimension.

II. SYSTEM MODEL AND KNOWN CAPACITY

A. MIMO-MAC model and per-antenna power constraint

A K-user Gaussian MIMO-MAC with n antennas at each
transmitter and m antennas at the receiver can be modeled as

y =

K∑
i=1

Hixi + z , (1)

where vector xi ∈ Cn×1 is the transmitted signal of the ith
user, vector y ∈ Cm×1 is the received signal, Hi ∈ Cm×n
is the channel matrix from the ith user to the receiver, and
vector z ∼ CN (0, I) is the additive circularly symmetric
complex Gaussian noise at the receiver1. We assume that the
channel matrices are full-rank and perfect CSI is available at
all transmitters and the receiver.

In this model, we consider a per-antenna power constraint in
which each transmit antenna has its own power budget and the
antennas of the same user can cooperate in terms of signaling.
Considering zero-mean input signals, Qi = E[xix

†
i ] is the

transmit covariance matrix of the ith user. Hence, the set of
covariance matrices {Qi} satisfies

diag(Qi) 4 Pi, ∀i = 1, · · · ,K , (2)

1Without loss of generality, we assume that this noise vector is spatially
white and has been normalized.
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where Pi = diag{Pi1, Pi2, · · · , Pin} and Pij is the power
constraint for the jth antenna of the ith user.

B. Review of the capacity with sum power constraint
For comparison, the sum power constraint and the corre-

sponding MIMO-MAC capacity are summarized here. In this
scenario, the ith user has the total transmit power across all
its antennas constrained by Pi, that is,

tr(Qi) ≤ Pi, i = 1, · · · ,K . (3)

To achieve sum capacity, the users choose their positive
semidefinite transmit covariance matrices, {Qi}, to maximize
the sum rate of the MIMO-MAC subject to the above power
constraints.

This problem can be solved efficiently by iterative water-
filling [2]. The underlying principle is to successively update
each one of the K covariance matrices, say Qk, by keeping all
other K−1 matrices at the other users unchanged. In each step,
the subproblem is equivalent to a single-user rate maximization
problem by treating other users’ signals as noise, for which
water-filling is readily applicable. This algorithm converges
surely to the sum capacity and the rate of convergence is fast.

III. SUM RATE MAXIMIZATION WITH PER-ANTENNA
POWER CONSTRAINT

The sum-rate maximization problem for MIMO-MAC with
per-antenna power constraint can be formulated as a convex
optimization problem of {Qi}:

max
{Qi}

log det
(
Im +

K∑
i=1

HiQiH
†
i

)
(4)

s.t. diag(Qi) 4 Pi, i = 1, · · · ,K
Qi < 0, i = 1, · · · ,K .

The sum capacity with per-antenna power constraint is usually
less than that with sum power since the feasible region of
the former optimization problem is included in the latter as a
subset. Unfortunately, no closed-form solution has been found
for this problem. Inspired by iterative water-filling, we propose
an iterative mode-dropping algorithm to solve this problem
efficiently. Before presenting this algorithm, it is necessary to
briefly review mode-dropping for single-user MIMO channels
as in [5].

A. Single-user mode-dropping
The problem in (4) reduces to the scenario of single-user

MIMO channels when K = 1. The KKT conditions are neces-
sary and sufficient for optimality because Slater’s condition is
satisfied, and the objective function and inequality constraints
are continuously differentiable and concave functions of {Qi}.
Based on the KKT conditions, a set of single-user optimality
conditions can be stated as follows.

H†1(Im + H1Q
∗
1H
†
1)
−1H1 = D1 −M1 (5)

M1Q
∗
1 = 0

diag(Q∗1) = P1

M1,Q
∗
1 < 0

diagonal D1 � 0 ,

where positive-definite diagonal matrix D1 ∈ Cn×n is the dual
variable associated with the per-antenna power constraint and
Hermitian positive semidefinite matrix M1 ∈ Cn×n is the dual
variable associated with the positive semidefinite constraint.
The covariance matrix Q∗1 satisfying the optimality conditions
in (5) is the optimal solution that achieves the single-user
MIMO capacity.

The most important and challenging step of mode-dropping
is to express Q∗1 as a function of D1 by eliminating M1 in
the optimality conditions. In [5], closed-form solution for Q∗1
in terms of D1 is established for all channel sizes. Using
this solution, the remaining step is to find the optimal dual
variable D1 such that the established solution satisfies the
power constraint. To arrive at this optimal value, an iterative
algorithm is proposed to update D1 at each step until the
duality gap converges to within a specified tolerance. Due
to space limitation, we summarize the main steps of this
algorithm as follows:

1) Compute Q∗1 from D1: Let the singular value de-
composition (SVD) of the channel matrix be H1 =
UHΣHV†H. If m ≥ n, let ΣH = [Σn,0n,m−n]

T and
form
• K = VHΣnV†H, K−1 = VHΣ−1n V†H.
• Fn = KD−11 K†.
• −Sn = non-positive eigenmodes of (Fn−In), here

the modes contained in Sn are dropped.
• Z = K−1Sn(K

−1)†.
• Q∗1 = D−11 −K−1(K−1)† + Z.

If m < n, let ΣH = [Σm,0m,n−m] and V1 be the first
m columns of VH (i.e., write VH = [V1 V2]).
• Define the pseudo inverse of H1 as H−1 =

V1Σ
−1

mU†H.
• Take (−Sm) as the non-positive eigenmodes of

H1D
−1
1 H†1 − Im.

• Z = H−1Sm(H−1)†.
• B = V†1

(
Z−H−1(H−1)†

)
D1V2(V

†
2D1V2)

−1.
• A =

(
In−m −B†V†1D1V2

)
(V†2D1V2)

−1.

• X = V2AV†2 + V1BV†2 + V2BV†1.
• Q∗1 = D−11 −H−1(H−1)† + Z−X.

2) Update D1: D−11 ← D−11 + P1 − diag(Q∗1).

After choosing an initial D1 � 0, the above procedure is
repeated until the duality gap |tr(D1(Q

∗
1 − P1))| converges

to within a pre-specified tolerance. The algorithm is shown to
always converge to the optimal value. For more details on the
derivation and convergence analysis, refer to [5].

The capacity of single-user MISO channels with per-antenna
constraint is a special case of n > m in which m = 1 and
the channel matrix H1 reduces to a vector h1 ∈ C1×n. In
this case, closed-form optimal solution exists and no iterative
procedure is necessary [4]. The entries of optimal covariance
matrix are given by

qij =
h∗1ih1j
|h1ih1j |

√
P1iP1j , i, j = 1, · · · , n. (6)

where the h1i is the ith entry of channel vector h1.
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B. Iterative mode-dropping

The following theorem on the optimality conditions moti-
vates and lays the foundation for the iterative mode-dropping
algorithm:

Theorem 1 (Optimality conditions). The set of transmit co-
variance matrices, {Q∗i }, is the optimal solution of the MIMO-
MAC sum-rate maximization problem in (4) if and only if for
each i ∈ {1, · · · ,K}, Q∗i is the optimal solution of the single-
user rate maximization problem:

max log det(Im + ĤiQiĤ
†
i ) (7)

s.t. diag(Qi) 4 Pi

Qi < 0 ,

where Ĥi is the effective channel matrix defined as

Ĥi =
(
Im +

K∑
k=1,k 6=i

HkQ
∗
kH
†
k

)−1/2
Hi . (8)

Proof: The only if part is easy and follows similar
argument to the proof of Theorem 1 in [2]. Herein, we
prove the if part. From the KKT conditions of the multiuser
problem in (4), we can obtain a set of necessary and sufficient
optimality conditions as

H†i

(
Im +

K∑
i=1

HiQ
∗
iH
†
i

)−1
Hi = Di −Mi (9)

MiQ
∗
i = 0

diag(Q∗i ) = Pi

Mi,Q
∗
i < 0

diagonal Di � 0 ,

for all i = 1, 2 · · · ,K. The matrices {Mi} and {Di} are dual
variables associated with the per-antenna power constraints of
the K users and the positive semidefinite constraints of the co-
variance matrices. Using similar arguments to the single-user
case, a set of covariance matrices satisfying these conditions
is the optimal solution of the MIMO-MAC problem.

Next, we decouple the conditions in (9) into an equivalent
ensemble of K single-user optimality conditions. This can be
done by rewriting the first equation in (9) as

Ĥ†i (Im + ĤiQ
∗
i Ĥ
†
i )
−1Ĥi = Di −Mi , (10)

where Ĥi is the effective channel matrix defined in (8). It
follows that rank(Ĥi) = rank(Hi). By replacing the first
equation in (9) by (10), the multiuser optimality conditions
are successfully decoupled.

In turn, the new conditions with (10) for each i are exactly
the optimality conditions for the single-user rate maximization
problems in (7). That is, if for each i ∈ {1, · · · ,K}, Q∗i is the
optimal solution of (7), then the set {Q∗i } will automatically
satisfy the multiuser optimality conditions in (9), and is
therefore the optimal solution of the sum-rate problem in (4).

Theorem 1 uncovers a simple but interesting fact: the
optimal transmit covariance matrices, {Q∗i }, are in a state of
equilibrium. The process of finding them can be viewed as

that of moving towards this equilibrium state. The iterative
mode-dropping algorithm successively optimizes one of these
matrices at a time, while maintaining the others, and in the end
reaches the equilibrium. The procedure is given in Algorithm
1.

Algorithm 1: Iterative mode-dropping for MIMO-MAC
sum-rate maximization with per-antenna power constraint

Initialize Qi = 0, i = 1, · · · ,K
repeat

for i = 1, · · · ,K
W

(i)
z = Im +

∑K
k=1,k 6=i HkQkH

†
k

Ĥi =
(
W

(i)
z

)−1/2
Hi

Qi = argmax
diag(Q)4Pi,Q<0

log det(ĤiQĤ†i + Im)

(using single-user mode-dropping in Section III.A)
end

until the sum rate converges

The following theorem establishes the sure convergence of
the proposed algorithm:

Theorem 2 (Convergence). In iterative mode-dropping for
MIMO-MAC, the sum rate always converges to the sum
capacity and all the covariance matrices {Qi} converge to
the optimal matrices.

Proof: At the ith step of each iteration, single-user mode-
dropping finds the optimal Qi to maximize the sum rate while
keeping the other covariance matrices unchanged. Since the
objective function of this subproblem is continuous and strictly
concave, the optimal solution is unique and the optimized co-
variance matrix either remains unaltered or changes to increase
the sum rate. Henceforth, the sum rate is nondecreasing at
each step. Furthermore, it is always bounded above for a finite
power budget. Hence the sum rate must converge to a limit.
In addition, the sum rate is also a continuous function of Qi.
Therefore, as the sum rate approaches the sum capacity, the
changes in Qi diminish. In the end, each covariance matrix
converges to the solution of the single-user problem in (7).
According to Theorem 1, the proof is complete.

Remark 1: Iterative water-filling and iterative mode-
dropping update {Qi} differently. At each step of iterative
water-filling, the eigenvectors of Qi are solely determined by
the left singular vectors of corresponding effective channel
matrix and do not depend on the SNR of the ith user. The
eigenvalues of Qi are then found by water-filling the total
power across the spatial subchannels. In contrast, for iterative
mode-dropping, both the eigenvectors and eigenvalues of the
optimal Qi depend not only on the effective channel matrix
but also on the SNR and the power constraint. This is because
with per-antenna power constraint, the optimal Qi is not
diagonalizable by the left singular vectors of the effective
channel matrix. Thus in each step, iterative mode-dropping
usually updates both the eigenvectors and eigenvalues of Qi

simultaneously.
Remark 2: The convergence in Theorem 2 holds for all

random channel realizations. Although Theorem 2 holds for
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arbitrary initial conditions, setting initial covariance matrices
to zero provides a fast convergence. More specifically, the
sum rate is at most (K − 1)m/2 nats away from the sum
capacity after only one iteration for every Qi. This is the
same as the rate of convergence for iterative water-filling.
Since the proof follows the same procedure as the proof
for Theorem 3 in [2], we only highlight here the difference.
The terms λiPi and Sz in [2] are replaced by tr(DiPi)
and Im, respectively. To illustrate that the multiuser duality
gap is bounded by (K − 1)m/2, the authors of [2] proved
that the dual variables λi ≤ λ′i. Here, instead, we need to
show that tr(DiPi) 4 tr(D′iPi) for all i = 1, 2, · · · ,K,
where diagonal matrix Di is the solution of the following
minimization problem:

min tr(DiPi)

s.t. Di < H†iW
−1
K Hi , (11)

and diagonal matrix D′i is the solution of the following
minimization problem:

min tr(D′iPi)

s.t. D′i < H†iW
−1
i Hi , (12)

where Wi =
∑i
k=1 HkQkH

†
k + Im. Indeed, because

H†iW
−1
K Hi 4 H†iW

−1
i Hi, ∀i = 1, 2, · · · ,K , (13)

the feasible region of the optimization problem in (11) includes
that of (12) as a subset. Therefore, at optimum, we have
tr(DiPi) 4 tr(D′iPi), which holds for all i = 1, 2, · · · ,K.

Remark 3: The computational complexity of iterative mode-
dropping is approximately the product of the expected com-
plexity of single-user mode-dropping, the number of iterations
and the number of users K. We found from numerous numer-
ical experiments that the former two almost do not change and
therefore, the total complexity scales linearly with K as shown
later in simulations (Figure 2). In contrast, the complexity
of interior-point methods is a cubic function of K [6]. This
improvement becomes more significant when the number of
users K increases.

Remark 4: Although the proposed algorithm successfully
calculates the sum capacity of MIMO-MAC under per-antenna
power constraint, it cannot be used directly to generate the
whole capacity region except the inner and outer bounds as
shown in Section IV. To obtain the whole region, one needs to
solve the following weighted sum-rate maximization problem:

max
{Qi}

K∑
j=1

ωπj
log det

( Im +
∑j
i=1 HπiQπiH

†
πi

Im +
∑j−1
i=1 HπiQπiH

†
πi

)
(14)

s.t. diag(Qi) 4 Pi, i = 1, · · · ,K
Qi < 0, i = 1, · · · ,K ,

where πi denotes decoding order (the user πK is decoded
first and user π1 decoded last) and the weights satisfy ωπ1 ≥
ωπ2 ≥ · · · ≥ ωπK

. Efficient solution for this weighted-sum-
rate problem up to now is still unclear, even under the sum
power constraint.
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Fig. 1. Convergence examples of the sum rate under per-antenna power
constraint (iterative mode-dropping) and sum power constraint (iterative water-
filling).

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

Number of users K

N
um

be
r o

f S
in

gl
e-

us
er

 M
od

e-
dr

op
pi

ng

Fig. 2. The expected number of single-user mode-dropping iterations required
to reach within 10−6 bps/Hz of sum capacity, together with the standard
deviation.

IV. NUMERICAL EXAMPLES

In this section, we numerically investigate the convergence
behavior of iterative mode-dropping and quantify the dif-
ference between the MIMO-MAC capacities under the per-
antenna and the sum power constraints. Throughout this sec-
tion, we assume that the wireless channels undergo indepen-
dent Rayleigh fading, that is, the entries of the channel matri-
ces are i.i.d. circularly symmetric complex Gaussian variables
with zero mean and unit variance. The ergodic capacity is
computed by averaging over 2000 channel realizations.

In Figure 1, we compare convergence behaviors of iter-
ative mode-dropping and iterative water-filling. Consider a
system of K = 15 users with two different antenna settings:
n = 4,m = 4 and n = 8,m = 4. For each user, the per-
antenna power constraint is set to 0.5 for n = 4 and 0.25
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for n = 8 and the sum power constraint is set to 2. Figure 1
shows the ergodic sum rate versus the number of iterations
for both power constraints. After the first iteration, the sum
rates are already very close to the sum capacity, and after
the second iteration, the gap to optimality is lower than 10−1

for both constraints. The same convergence behavior can be
observed for all simulations that we ran. In addition, the higher
capacity achieved with more transmit antennas is attributed to
the diversity gain and array gain. In Figure 2, the expected
number of single-user mode-dropping iterations required to
reach within 10−6 bps/Hz of the sum capacity versus the
number of users is shown together with the corresponding
standard deviation. Here we let n = m = 4, the per-antenna
constraint be 0.5, and use 500 random channel realizations to
generate these statistics. This result verifies Remark 3 that the
total complexity grows linearly with the number of users K.

Figure 3 presents the capacity region of a two-user MIMO-
MAC for the two different power constraints. The numbers
of antennas are n = m = 4, the sum power constraint
is 2 per user and the per-antenna constraint is 0.5. The
first iteration of all the transmit covariance matrices leads
to {QA

1 ,Q
A
2 } that can achieve the point A if Q2 is updated

before Q1, and {QB
1 ,Q

B
2 } that can achieve the point B vice

versa. Iterative mode-dropping converges to both point C and
point D, which give the sum capacity line CD. The inner-
bound curve AC corresponds to rate region achieved by the
convex hull {µQA

1 + (1 − µ)QC
1 , µQA

2 + (1 − µ)QC
2 } with

0 ≤ µ ≤ 1, similar for the curve BD. The piecewise outer
bound comprises of three line segments that are defined by
the single-user capacities and the sum capacity. The proposed
algorithm converges precisely to the sum capacity with per-
antenna constraint and can provide computationally simple
inner and outer bounds to the capacity regions. In addition, this
figure illustrates the difference between the capacity regions
under the two power constraints.

Figure 4 compares the sum capacities under the following
scenarios: 1) sum power constraint; 2) per-antenna constraint

-10 -5 0 5 10 15 20
0

10

20

30

40

50

60

70

SNR (dB)

S
um

 c
ap

ac
ity

 (b
ps

/H
z)

 

 

sum power
per-antenna (equal)
per-antenna (unequal)
indep (equal, n=8)
indep (unequal, n=8)
indep (equal, n=4)
indep (unequal, n=4)

-10 0 10 20
1

2

3

4

5

6

7

SNR (dB)

C
pe

r-
an

t - 
C

in
de

p  (
bp

s/
H

z)

 

 

-10 0 10 20
0.2

0.6

1

1.4

SNR (dB)

C
su

m
 - 

C
pe

r-
an

t (b
ps

/H
z)

 

 

unequal

equal

unequal
equal

n=8
n=4

n=8

n=8

n=4
n=4

Fig. 4. Comparison of the ergodic sum capacity versus per-user SNR for
different scenarios. The insetted figures show the capacity gaps between
the per-antenna constraint and independent spatial multiplexing (left), and
between the sum power and per-antenna power constraints (right). Parameters:
K = 4,m = 4 and n = 4, 8.

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

The number of users K

S
um

 c
ap

ac
ity

 (b
ps

/H
z)

 

 

5 10 15 20
0

0.5

1

1.5

2

2.5

The number of users K

C
su

m
 - 

C
pe

r-
an

t (b
ps

/H
z)

 

 
n=m=2

n=m=4

n=m=8

5 10 15 20
0

5

10

15

The number of users K

 

 

C
pe

r-
an

t  -
 C

in
de

p (b
ps

/H
z) sum power

per-antenna
per-antenna
(first iteration)
indep

n=m=2

n=m=4

n=m=8

n=m=4

n=m=8

n=m=2

Fig. 5. Ergodic sum capacity versus the number of users under sum power
constraint, per-antenna power constraint and independent spatial multiplexing.
For the per-antenna power constraint, the sum rate after the first iteration
is also included. The insetted figures show the capacity gaps between the
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with equal power across antennas; 3) per-antenna constraint
with unequal power, in which the power of the kth antenna
is proportional to k; 4) spatial multiplexing with equal sub-
streams, that is, the transmit covariance matrices Qi’s are
proportional to I; and 5) spatial multiplexing with unequal
substreams, in which Qi’s are diagonal, with the kth diagonal
entry proportional to k. We also plot the capacity gaps
between the sum power and the per-antenna power constraints
(equal or unequal), and between the per-antenna constraints
(equal or unequal) and the corresponding independent spatial
multiplexing. The parameters are chosen as K = 4, m = 4,
and n = 4, 8.
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The following observations can be made: First, as expected,
the decreasing order of capacity is under sum power, per-
antenna (equal power), per-antenna (unequal power), inde-
pendent spatial multiplexing (equal power) and independent
spatial multiplexing (unequal power). Our simulations provide
a quantitative example of the difference between MIMO-
MAC capacities under per-antenna constraint or sum power
constraint, and show that both are significantly higher than the
sum rate under independent spatial multiplexing in which Qi’s
are not at all optimized. Second, as the number of transmit
antennas n increases, the increase in sum capacity under
any of the first three power constraints is significantly more
than that under independent spatial multiplexing. Additional
transmit antennas provide a better diversity gain, and itera-
tive waterfilling and iterative mode-dropping both attempt to
minimize the effects of multiple access interference, whereas
independent spatial multiplexing does not. Hence the capacity
gap (compared to independent spatial multiplexing) increases
with the number of transmit antennas.

Last, as illustrated in Figure 5, the sum capacity under sum
power constraint, per-antenna power constraint and indepen-
dent spatial multiplexing increases with the number of users
K. The capacity gaps also increase with K and the number of
antennas. As K increases, however, the capacity gaps become
saturated because the system is more interference-limited. As
the number of antennas increases (from n = m = 2 to
n = m = 8) the capacity increases due to the degree of
freedom gain. Furthermore, after just one iteration, the sum
rate obtained by iterative-mode dropping is already in good
proximity with the true capacity.

V. CONCLUSION

In this letter, we have proposed an iterative mode-dropping
algorithm to compute the sum capacity of the MIMO-MAC
with per-antenna power constraint. It successively optimizes
each user’s transmit covariance matrix until convergence.
Similar to iterative waterfilling, iterative mode-dropping is
fully distributive and has fast convergence. The algorithm is
attractive for its simplicity, low complexity and practicality
when compared to general convex programing methods.

Simulations results illustrate the difference in the sum
capacity of MIMO-MAC under per-antenna or sum power
constraints. Both of them are significantly higher than the
sum rate under independent spatial multiplexing in which the
input signals are non-optimized. This gain in sum capacity,
however, saturates with the number of users as the multiple
access interference increases even under per-antenna power
constraint. Increasing the number of antennas can increase the
sum capacity as well as the capacity gain by having better
degree of freedom gain, diversity gain or array gain.
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